Muons and electrons for quarkonia with ATLAS and CMS

Émilien Chapon

DPhP / Irfu / CEA Saclay

Muon detection and quarkonium reconstruction at the EIC April 25, 2022

Muons

Émilien Chapon (Irfu)

Quarkonia with ATLAS and CMS

ATLAS

- Monitored drift tubes (MDT, precision)
- Cathode strip chambers (CSC, precision)
- Resistive-plate chambers (RPC, trigger)
- Thin-gap chambers (TGC, trigger)

CMS

- Drift tubes (DT, precision)
- Cathode strip chambers (CSC, precision)
- Resistive-plate chambers (RPC, trigger)
- Gas electron multiplier (GEM, new for Run 3)

Émilien Chapon (Irfu)

Quarkonia with ATLAS and CMS

ATLAS

Physica C: Superconductivity 468 (2008) 2137, EPJC 76 (2016) 292

CMS

- Magnetic field pprox 3.8 T in the inner detector
- Momentum resolution driven by the inner tracker at low p_T

ATLAS

ATLAS-CONF-2011-003, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysicsTriggerPublicResults, EPJC 78 (2018) 171

7 / 21

CMS

JINST 7 (2012) P10002, JINST 13 (2018) P06015, PRL 114 (2015) 191802, JHEP 11 (2020) 001

ATLAS/CMS

Similar acceptance at low p_T between ATLAS (left) and CMS (right) (NB: some differences expected, e.g. trigger / efficiency)

ATLAS upgrades

ATLAS-TDR-026

- Phase-I (Run 3, now): BIS78 (barrel inner MDT and RPC), NSW (new small wheel): MM (micromegas), sTGCs (small-strip TGC)
- Phase-II (HL-LHC, 2029+): sMDTs (small-diameter MDT)
- Trigger and readout electronics (higher rates, higher latency)

CMS upgrades

CM S- T D R- 01 6

- New chambers in the forward region (lower trigger rates, increased acceptance): CSC (ME0), GEM (GE), improved RPC (iRPC).
- Trigger and readout electronics (higher rates, higher latency)

Electrons

ATLAS

Combine information from the liquid argon calorimeter and inner detectors: pixels, silicon tracker (SCT), transition radiation tracker (TRT).

Combine information from the PbWO4 calorimeter and the silicon tracker

ATLAS

JINST 16 (2021) P05014

Good resolution and S/B (left), but small number of recorded events for quarkonia (right)

Good resolution and S/B, but small number of recorded events for quarkonia

(Irfu)

Émilien Chapon

JINST 10 (2015) P06005

CMS special case

Special case: "data parking"

- Record high rate of $b \to \mu + X$ events, which are only reconstructed months later
- ullet pprox 10 billion unbiased b hadron decays recorded throughout Run 2
- Targetting flavour anomalies

https://cds.cern.ch/record/2704495

Quarkonia are measured only in $\mu^+\mu^-$ with ATLAS and CMS, never e^+e^- (except for performance studies: efficiency, momentum scale and resolution):

- Low-p_T muons are much easier to trigger than low-p_T electrons
 - Only calorimeter information available at L1 \rightarrow very high rate of low $E_{\mathcal{T}}$ clusters
 - Large backgrounds for electrons (jets, photons)
- Higher efficiency (and / or lower background) for muons than electrons
- Similar / better resolution for muons at low p_T

- Muons: excellent performance at both low and high p_T (i.e. for quarkonia and for W/Z)
- Electrons: excellent performance at high p_{T} , very challenging triggering at low $p_{T} \rightarrow$ not suitable for quarkonium measurements