

H1 analyses of J/psi and related

Meeting on EIC quarkonium measurement plans

Stefan Schmitt

Outline

- H1 papers on Quarkonia overview
- The H1 experiment
- Electron and muon identification
- J/psi trigger strategies in H1
- Two examples of J/psi papers

• Analysis possibilities in H1

SPITZENFORSCHUNG FÜR **HELMHOLTZ**

H1 papers on Quarkonia

Selection of some physics results

Diffractive J/psi (2005 and 2013) Photoproduction (2013): description by Regge-inspired fits DIS (2005): reasonable predictions for

Inelastic J/psi (2009)

At the time, no calculation existed for DIS. MC works reasonably

Calculations for photo-production did not work very well

CFNS workshop, May 2020 S.Schmitt, HERA introduction 4

The H1 detector

EM+had SpaCal

toroid)

H1 electron identification (calorimeter)

- Standard H1 electron finder is based on isolated calorimeter clusters
- Work very well for scattered electron, match regions where trigger is efficient
- LAr: trigger+finder 100% efficient for $P_T > 10$ GeV
	- \rightarrow Q²>150 GeV², y<0.7
- SpaCal: trigger+finder 100% efficient for E>10 GeV
	- \rightarrow 5<Q²<100 GeV², y<0.6
- Electron finder also works well for thresholds below the (standard) DIS triggers
	- $-LAr: P_T>5 GeV$
	- SpaCal: E>2 GeV
- For non-isolated, low P_T objects (such as inelastic J/psi), the standard electron finder is not the best choice

H1 electron identification (track+calo, low P_T)

100

- Developed in 2009: electron finder based on track and LAr calorimeter
- **Originally designed for open** beauty analysis
	- Uses neural networks to combine track and calorimeter properties
	- Low P_T threshold
	- Works for electron in jets

Selected analyses with new electron finder: Inel. J/psi: Eur.Phys.J.C68 (2010) 401 [arxiv:1002.0234] b→e: Eur.Phys.J.C72 (2012) 2148 [arxiv:1206.4346] Diffractive J/psi: Eur.Phys.J.C73 (2013) 2466 [arxiv:1304.5162] Thesis on new electron finder: M. Sauter (2009) [\[link\]](https://www-h1.desy.de/psfiles/theses/h1th-518.pdf)

Inelastic J/psi with

3

 $H1$

Data (ep)

inel. J/ $\Psi \rightarrow ee$

H1 muon identification

Run 59089 Event 30154

- Muon identification:
	- Fwd muon system
	- Muon chamber +central track
	- Calorimeter +central track
- Muon chambers are reached in H1 only for approximately $P_T>1.5$ GeV
- Calorimeter discriminator inputs:
	- Energies in cylinders $r=15,30$ cm
	- Distance of clusters from calorimeter impact point

CFNS workshop, May 2020 S.Schmitt, HERA introduction 9

H1 muon identification efficiencies for J/psi

- Technical note describes algorithm and HERA-I efficiency in great detail
- HERA-II efficiencies can be found in the corresponding publications and theses on diffractive and inelastic J/psi [\[link to theses\]](https://www-h1.desy.de/publications/theses_list.html)
- Low P_T : calorimeter dominates
- Both detectors contribute equally at high P_T

HERA-I: technical note H1-IN 97-518 HERA-II theses: M.Steder (Hamburg, 2008) and F.Huber (Heidelberg, 2012)

J/psi Trigger strategies in H1

- DIS: inclusive trigger on scattered electron all J/psi data recorded
- Photoproduction: trigger on J/psi signature, more difficult
	- − Inelastic J/psi→μ*µ⁻: signal in muon detector plus high P_⊤ central track No trigger strategy for inelastic J/psi $\rightarrow e^+e^-$
	- Diffractive J/psi: use Fast Track Trigger to select low multiplicity events Before 2005 (no fast track trigger): using other, less efficient trigger strategies

Trigger strategy enforced the use of muon channel for inelastic J/psi photoproduction

Inelastic J/psi in DIS and γp (2009)

- photoproduction: use only muons (lack of trigger for J/psi $\rightarrow e^+e^-$ as discussed on prev. sllide)
- DIS: both electron and muon pairs
- J/psi counting: fit of signal+bgr
- For electron, fit function accounts for radiative tail [hep-ex/0505008]

Eur.Phys.J.C68 (2010) 401 [arxiv:1002.0234] PhD: M. Steder (Hamburg, 2008) [\[link\]](https://www-h1.desy.de/psfiles/theses/h1th-488.pdf)

CFNS workshop, May 2020 S.Schmitt, HERA introduction 12

Diffractive J/psi photoproduction (2013)

- Trigger: two oppositely charged tracks with $P_T > 800$ MeV
	- Uses the FastTrackTrigger, operational 2005-2007
- Analysis cuts: require empty calorimeter (diffraction)
- Identify the two tracks as either

Eur.Phys.J.C73 (2013) 2466 [arxiv:1304.5162] PhD: F.Huber (Heidelberg 2012) [\[link\]](https://www-h1.desy.de/psfiles/theses/h1th-796.pdf)

- 0 \mathcal{P} P $\overline{2}$ 3 $m_{\mu\mu}$ [GeV] electrons or muons **•** Muon counting: fit of signal+background (bgr dominated by π pair production)
	- Electron counting: no fit, subtract MC prediction (QED lepton pair production)

Summary on H1 electron and muon ID

- Large number of J/psi analyses from H1, mainly on HERA-I data
- Muon-ID:
	- $-$ For P_T<1.5, make use of calorimeter with its longitudinal segmentation
	- \overline{P} For P_T>1.5, include muon chambers to reach best efficiency
- Electron-ID:
	- Calorimeter-based for isolated, large P_T objects
	- Backward direction: SpaCal for isolated electrons with E>2 GeV
	- Track+calorimeter with neural network for non-isolated objects at low P_T

Summary on Trigger and Analysis limitations

- **Trigger limitations** for inelastic J/psi photo production:
	- only muon chamber based trigger was available
		- \rightarrow in H1, the muon chambers were essential for this type of analysis
- **Acceptance limitations** of central tracker (not discussed in detail)
	- Small W (proton direction): muons only (forward muon detector)
	- High W (electron direction): electrons only (SpaCal calorimeter)
- Mass reconstruction with a fit works best for tracks from muons, because of the radiative tail in electron channel

Diffractive J/psi→ee: perfect modelling of (QED) background, no fit required

Outlook: analysis possibilities in H1

- H1 welcomes new members
- Members join as individuals, no (financial) commitment involved
- We already have several new collaborators from the US, analyzing properties of the hadronic final state
- **Vector mesons are presently not covered in H1 → interesting opportunity to back-up your EIC studies with data**

Example uncovered analysis:

• J/psi in diffractive DIS:

HERA-II data have not been analyzed (this is 80% of the available data!)

• Novelty aspect: lepton beam was polarized at HERA II, could measure spin transfer

Contact sschmitt@mail.desy.de for details

Backup

CFNS workshop, May 2020 S.Schmitt, HERA introduction 16

The HERA collider

umin

- Operated from 1992 to 2007
- Circumference 6.3 km
- Electrons or positrons colliding with protons
- Proton: 460-920 GeV, Leptons 27.6 GeV
- Peak luminosity \sim 7×10 31 cm $^{-2}$ s $^{-1}$
- Lepton beam polarisation up to 40-60% (Sokolov-Ternov effect, rise-time ~30 minutes)

HERA compared to other colliders

• HERA at construction time: energy frontier $(E_p \sim \text{Tevatron}, E_e \sim \frac{1}{2}$ LEP)

Detectors were designed for discoveries, not so much for precision

- EIC compared to HERA:
	- Reduced center-of-mass energy \times 0.3
	- Much higher luminosity ×100
	- Better lepton polarisation
	- Target polarisation
	- Heavy targets
	- Much improved detectors: tracking, acceptance, particle identification, forward detectors, ...

HERA boost visualized

HELMHOL

Processes studied at the HERA collider

- Neutral Current DIS (Deep Inelastic Scattering)
	- electron in main detector
- Charged current DIS
	- neutrino with high transverse momentum (escapes detection)
- Photoproduction
	- Electron scattered at very low angle (dedicated low-angle detector or not detected)

Large electron scattering angle (rare event)

Processes studied at the HERA collider

- Neutral Current DIS
	- electron in main detector
- Charged current DIS
	- neutrino with high transverse momentum (escapes detection)
- Photoproduction
	- Electron scattered at very low angle (dedicated low-angle detector or not detected)

Processes studied at the HERA collider

- Neutral Current DIS
	- electron in main detector
- Charged current DIS
	- neutrino with high transverse momentum (escapes detection)
- Photoproduction
	- Electron scattered at very low angle (not detected or scattered into dedicated low-angle tagger)

Photoproduction (most frequent type of event)

Scattered electron in detector

Photoproduction and DIS

- **Main kinematic variable: negative four-momentum squared Q²= −(e-e')²**
- \bullet Q² provides a natural hard scale for perturbative calculations
- Deep-inelastic scattering (**DIS**): *Q* ²≫0
	- Perturbative QCD applicable
- **Photoproduction**: *Q* ²∼0
	- Perturbative QCD works only if there is another hard scale (jet, heavy quark, etc)

Neutral current (NC) event

CFNS workshop, May 2020 S.Schmitt, HERA introduction 24

- Kinematic variables: Q^2 , x, y, Q^2 =sxy
- Experimative variables e , \ldots scattered electron e' and hadronic final state X

- "Electron" method: $y=y_e$ and $p_T=p_{T,e}$
- At low y, the electron method is limited by energy resolution, initial and final state radiation
	- \rightarrow use y=y_h (sigma method)
- Other methods also in use: double-angle, etc.

Neutral current DIS kinematics at HERA

Kinematic variables: Q^2 , x, y, Q^2 =sxy Determine from 4-vectors of beam particles e, p, scattered electron e' and hadronic final state X

- "Electron" method: $y=y_e$ and $p_T=p_{T,e}$
- At low y, use y=y_h (sigma method) \rightarrow hadrons contributing to y_h have to be within detector $acceptance \rightarrow low y / high x is not accessible$

HERA is "low-x" because of acceptance limitations in the forward (proton) direction

