

Belle II Overview

Apr 25, 2022

Bryan Fulsom (PNNL)

Workshop on Muon Detection and Quarkonium Reconstruction at the EIC

PNNL is operated by Battelle for the U.S. Department of Energy

B-Factories Legacy

e.g.: "The Physics of the B Factories", EPJC 74, 3026 (2014)

- 1999~2010 : BaBar (SLAC) & Belle (KEK)
- Flavor physics: CKM/UT, CPV in B decays
- Hints for NP in rare processes
- New particle discoveries: "XYZ" states

Belle II / Bryan FULSOM (PNNL) / Muons & Quarkonium at EIC / 2022.04.25

BELLE

3.84

3.86

3.9

Motivations for a next-generation B Factory

Broad physics program

- New Physics in precision/rare B meson decays
- Dark sector particle searches
- Spectroscopy of exotic QCD
- ...and more

"The Belle II Physics Book", PTEP 2019, 123C01 (2019) "Belle II physics reach and plans for the next decade and beyond", SNOWMASS 2021 White Paper (2022)

- Advantages of the Belle II
 - "Clean" environment
 - Full event reconstruction
 - Decay with neutrals (γ , π^{o} , K₁, v) in final state
 - Large statistics
 - Complementary to LHC

The Belle II Collaboration

- Experiment located at KEK in Tsukuba, Japan
- 1100+ members, 123 institutions, 26 nations

Accelerator Upgrade

SuperKEKB Upgrade

- "Nano-beam" interaction point
- Increase in current
- Goal: factor of 40x increase in luminosity
- Nominal energy: e⁻ (7 GeV) e⁺ (4 GeV)

Belle II / Bryan FULSOM (PNNL) / Muons & Quarkonium at EIC / 2022.04.25

for higher beam current

Belle II Detector Rebuild

- Order of magnitude luminosity increase means:
 - Higher background ✓ Radiation damage ✓ Detector readout
 - Higher event rate ✓ Trigger, DAQ, computing
 - Boost change ✓ Improve vertexing

6

Belle II Detector

KLong and Muon detector

- Alternating iron / active layers
 - Barrel: 2 scintillator + 13 RPCs
 - Endcap: 14 scintillator
 - New for Belle II: PS strips + WLS + SiPM

Preliminary performance

+ 1.5%PTP + 0.01%POPO

Belle II / Bryan FULSOM (PNNL) / Muons & Quarkonium at EIC / 2022.04.25

WLS fibre

Frame

Electromagnetic CaLorimeter

- CsI(TI) crystals
 - Reused from Belle detector
 - Electronics upgrade
 - Waveform readout for hadron/electron discrimination
- Preliminary performance

Belle II / Bryan FULSOM (PNNL) / Muons & Quarkonium at EIC / 2022.04.25

Future Developments

- Low-momentum μ reconstruction
 - Muons do not reach KLM
 - Use tracking and/or ECL information
 - BDT and CNN of variables/shape

Variable	Range	Description	
E/p [c]	-	Ratio of cluster energy over track momentum.	
$E_{cluster}$ [GeV]	-	Cluster energy.	
E_{1}/E_{9}	-	Ratio of the energy of the seed crystal	
		over the energy sum of the 9 surrounding crystals.	
E_{9}/E_{21}	-	Ratio of the energy sum of 9 crystals surrounding	
		the seed over the energy sum of the 25	
		surrounding crystals (minus 4 corners).	
$ Z_{40} $	_	Zernike moment $n = 4$, $m = 0$, calculated in a plane	
		orthogonal to the EM shower direction.	
$ Z_{51} $	—	Zernike moment $n = 5$, $m = 1$, calculated in a plane	
		orthogonal to the EM shower direction.	
Z_{MVA}	-	Score of BDT trained on 11 Zernike moments.	
$\Delta L [\text{mm}]$	-	Projection on the extrapolated track direction	
		of the distance between the track entry point	
		in the ECL and the cluster centroid.	
$\Delta \log \mathcal{L}(\ell/\pi)_{CDC}$	-	Log-likelihood difference between $\ell - \pi$	
		hypothesis in the CDC.	
$\Delta \log \mathcal{L}(\ell/\pi)_{TOP}$	ECL barrel	Log-likelihood difference between $\ell - \pi$	
		hypothesis in the TOP.	
$\Delta \log \mathcal{L}(\ell/\pi)_{ARICH}$	ECL FWD endcap	Log-likelihood difference between $\ell - \pi$	
1 G 408 6 8	0.00403.04400	hypothesis in the ARICH.	
$\Delta \log \mathcal{L}(\mu/\pi)_{KLM}$	p > 0.6 GeV/c	Log-likelihood difference between $\mu - \pi$	
		hypothesis in the KLM.	

EPJ Web Conf., 245 (2020) 06023

Belle II Timeline

- 2016: "Phase 1": Beam commissioning
- 2017: Detector roll-in
- 2018: "Phase 2"
 - Background study w. partial detector
 - First collisions/data
- 2019: "Phase 3"
 - Nominal start of operations
 - 2021: Inst. lumi. record: >3.8x10⁻³⁴cm⁻²s⁻¹
 - 2021: Non-Y(4S) Energy scan
- 2022-2023: "Long Shutdown 1"
 - Detector/accelerator upgrades
- 2023~2027: Resume operations, target: 1.5-4 ab⁻¹
- 2028+: "Long Shutdown 2" upgrade (?), continue up to 50 ab⁻¹

11

How do we study quarkonium experimentally? **Production Mechanisms**

- Multiple methods to produce quarkonium/exotics at Belle II
- Production mode provides important information (e.g. J^{PC}, type)

• Several of these are **unique to Belle II**

How do we study quarkonium experimentally? **Decay Modes**

- Search for transitions between states
 - Radiative (γ) and hadronic ($\pi\pi$, π^0 , η , ...)
 - Governed by selection rules
- Below-threshold
 - $ee/\mu\mu$: low rate but clean, ψ/Υ , QED bkd
 - hadronic: low efficiency for N particles
- Above-threshold
 - Strong decays to DD/BB dominate

$$0^{++}$$

How do we study quarkonium experimentally? **Exclusive Analysis**

- Reconstruct a complete final state ("bottom-up")
 - E.g.: $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(pS) \rightarrow \mu^+\mu^-$
- Potential advantages
 - Low background
 - Few combinations, "clean" final state
 - Complete understanding of event
- Potential disadvantages
 - Efficiency loss
 - Low branching fractions

Entries / 0.005 GeV/c

How do we study quarkonium experimentally? **Inclusive Analysis**

- Reconstruct only part of the event ("top down")
 - E.g.: $e^+e^- \rightarrow \pi^+\pi^- X$
 - E.g.: $m_x = m_{miss} = sqrt[(p_{ee} p_{\pi\pi})^2]$
- Potential advantages:
 - Large statistics
 - Good resolution
 - Do not need to reconstruct X
- Potential disadvantages:
 - High background
 - Combinatorics
 - Other peaking decays

Belle II / Bryan FULSOM (PNNL) / Muons & Quarkonium at EIC / 2022.04.25

h_b(1P) DECAY MODES

Mode

Fraction (Γ_i/Γ)

 $\Gamma_1 \eta_b(1S) \gamma (52^{+6}_{-5}) \%$

$\eta_{b}(1S)$ DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
Γ ₁	hadrons	seen	
Г ₂	3h+3h-	not seen	
Г ₃	$2h^+2h^-$	not seen	
Г4	$4h^{+}4h^{-}$	not seen	
Г ₅	$\gamma \gamma$	not seen	
Г ₆	$\mu^+ \mu^-$	$< 9 \times 10^{-3}$	
Г ₇	$\tau^+ \tau^-$	<8 %	

Belle II Potential – B Decay

- High-statistics continuation from B-Factories
- Competition from LHCb, advantages for modes with neutrals
 - Confirm Z_c states and search for neutral partners
 - Absolute branching fractions $B \rightarrow X(3872,3915) K$
 - Confirmation of X(3872) width measurement with $D^0\overline{D}^0\pi^0$

N/20 MeV/c² 01100 BELLE 50

C=+'

Double cc

Pacific

Northwest

Initial state radiation

Belle II Potential – Other Processes

ISR

- Continuous mass range >4.6 GeV/c²
- Higher masses/channels (e.g. $\gamma_{ISR}\Sigma_c\overline{\Sigma}_c$)
- Confirm Z_c states (e.g. $e^+e^- \rightarrow h_c \pi \pi$)
- Double-cc̄
 - $e^+e^- \rightarrow (c\overline{c})_{J=1}(c\overline{c})_{J=0}$ production rule
 - Discovery of X(3940, 4160)
 - Expand to other $c\overline{c}$, search for new states
- Two-Photon
 - J^{PC} of X(3915)
 - Confirm φJ/ψ state?
 - D^(*)D^(*) final states

Belle II / Bryan FULSOM (PNNL) / Muons & Quarkonium at EIC / 2022.04.25

17

Belle II Potential – Non-Y(4S) Energies

- B-Factories extended their physics programs with non- $\Upsilon(4S)$ data
 - BaBar Υ (3S): discovery of $\eta_{\rm b}$ (1S)
 - Belle Υ(5S): discovery of h_b(1P, 2P), η_b(2S), Z_b(10610, 10650)[±]
 - KEKB/Belle energy scan data: Y_b(10753)

Belle II Potential – 10.75 GeV

- Belle: seven ~1fb⁻¹ scan points below $\Upsilon(5S)$
- New structure observed in $\pi^+\pi^-\Upsilon(\ell^+\ell^-)$ transitions

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0\substack{+4.0 \\ -4.5 \\ -1.3}\substack{+1.0 \\ -1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

Varying BB cross sections

JHEP 06 (2021) 137

 $\sigma(\Upsilon(1S)\pi^{+}\pi^{-})$ (pb) \sim \rightarrow \rightarrow

 $\sigma(\Upsilon(2S)\pi^{+}\pi^{-})$ (pb) or

Belle II Energy Scan Nov. 10-29, 2021 (JST)

Considerations

- Potential for early physics impact by Belle II
- Limited luminosity requirement (O(15/fb))
- Υ(6S) requires accelerator infrastructure upgrade
- Energy scan operation was successful
 - Unique high stat. points between previous Belle energies

Belle II Progress – Charmonium/X(3872)

• "Rediscoveries" of several expected signal modes

- Verification of reconstruction, efficiencies, etc.
- More results to come with increased luminosity

Belle II Progress – Bottomonium

- Initial State Radiation production:
 - $\gamma_{\text{ISR}}\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)(\ell^+\ell^-)$
 - $\gamma_{\text{ISR}}\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S,2S)(\ell^+\ell^-)$
- Direct transitions: $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S,2S)$
- All signals observed in early Belle II data

• Prelude to energy scan analysis

- Belle II: next generation B-Factory
 - Advantages with clean event reconstruction, neutrals, unique production
 - Data collection underway since 2019, will continue through this decade
- Quarkonium / "XYZs" are a main component of the physics program
 - Belle II is poised to continue the successes of Belle
 - Energy scan recently performed to understand features near 10.75 GeV
 - Success serves as motivation for other non- $\Upsilon(4S)$ data: $\Upsilon(6S)$ and beyond
- Stay tuned for results at conferences this year

Thank you

