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Outline 

• Accelerators – why? 

• Accelerators 

– in Science 

• Particle & Nuclear Physics 

• Physical and Life Sciences 

– in Industry 

– in Medicine 

• Summary 
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WHY? 
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Why do we need accelerators?  

4 reasons: 

1. As super-microscopes: l=h/p 

2. To create very high energies 

3. To build nano-scale structures 

4. As a source of radiation 

 

 Science 

(particle & nuclear physics, physical, life 
and environmental sciences) 

 Society 

  (industry and medicine) 
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High Precision Frontier 

 

 

Known phenomena studied 

with high precision may show 
inconsistencies with theory 

 

 

 

 

 

 

High Energy Frontier 

 

New phenomena 

(new particles) 

created when the  
“usable” energy > mc2 [×2] 

 

 

 

 

 

 

Accelerators for particle physics 

What is needed, and why 
 

2 routes to new knowledge about the 

 fundamental structure of the matter 
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What to accelerate 

• We can accelerate stable particles 

– “Stable” means “with a lifetime long enough to 

capture and accelerate them 

• in practice, > ~m-second 

 

• Hadrons 

– p, d, t, a, … nuclei (up to Pb) & antiprotons 

• Hadrons contain “partons” (quarks, gluons…) 

• Leptons 

– e±, m± 

• Leptons are “point-like” 

– (at our present energy scales) 
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Livingston plot 
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Energy and luminosity 

• Energy must be sufficient  

– Above the threshold 

 

• Luminosity must be sufficient 

– enough events in a “reasonable” 

time 

• a few years 

–  “lifetime” of a graduate student 

E 

s 

Nev = L × s × t  

t ~ 107 s/year 

s ~ pb (10-36 cm2) 

For 1000 events in 1 year requires 

L ~ 1032 cm2s-1 

For fixed target (esp. neutrino 

experiments) the equivalent 
parameter is  

Beam Power or Protons on Target 
(POT) 
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An example – the LHC 

Gianotti, LP05 
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Future Accelerators for Particle Physics 

Large Hadron Collider 
 

Linear (e+e-) Collider 
 

Muon Collider 
 

Neutrino Factory 
 

EURISOL and Beta Beams 
 

“Factories” (f, t, c, b) 
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LARGE HADRON COLLIDER 
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The Large Hadron Collider 

• The two main goals are: 
– Find the Higgs 

• If it exists!!! 

– Find the new physics 
• If it exists!!! 

• We know ~ the energy scales 
– MH <250GeV ; ENP < 1TeV 

• pp collisions at high energy 
– Collision energy ~10% of total energy 

• Need a total collision energy >10TeV  

– Can calculate the cross-sections 
• Need a luminosity > 1033cm2/s 

• The Large Hadron Collider (LHC) @ CERN 
– E ~ 14TeV  ;   L ~ 1034cm2/s 

????????? 
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The CERN Accelerator Complex Complex 
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Integrated Luminosity 
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Do we know what we are doing? 
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Where is Higgs? 

What we 

knew 

What we 

know now 
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… and anything else? 

• Caution:  

– new physics may different! 

CMS 
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What Next? 

• Reach the full specification 

– 14 TeV 

– 1035 cm2s-1 (Actually  𝒅ℒ = 𝟑𝟎𝟎𝟎 𝒇𝒃−𝟏 ) 

 

• then 

– Upgrade the luminosity (S-LHC) 

~1036 cm2s-1 

– or the energy (D-LHC) 

>28 TeV 

depending upon physics and technology 
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LINEAR  e+e-  COLLIDER 
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Why an e+e- collider? 

After Barry Barish 
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Why an e+e- collider? 

After Barry Barish 

 LEP 

LHC  
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Why a linear e+e- collider? 

 

Synchrotron 

Radiation! 

 
or rather 

 

the lack of it in a linear machine 
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Key ILC Properties 

• Precision “true” CMS energy 

• Tuneable “true” CMS energy 

• Low backgrounds 

After Blair 
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Invisible Higgs? 

Measure recoil against Z
0 

h
o 

Z
o 

m+ 

m- 

Bambade et al. 

√s=230 GeV 

√s=350 GeV 

120 GeV Higgs: 

Advantages of 

running at lower than 

top threshold: 

After Blair 
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CLIC 3 TeV:  48 km 

CLIC 0.5 TeV: 13 km 

Linear Collider layouts 
 http://www.linearcollider.org/cms    http://clic-study.web.cern.ch/CLIC-Study/ 

 

ILC 0.5 TeV – 30 km 

ILC 1 TeV – 50 km 

Delahaye, ICHEP10 

http://www.linearcollider.org/cms/
http://www.linearcollider.org/cms
http://clic-study.web.cern.ch/CLIC-Study/
http://clic-study.web.cern.ch/CLIC-Study/
http://clic-study.web.cern.ch/CLIC-Study/
http://clic-study.web.cern.ch/CLIC-Study/
http://clic-study.web.cern.ch/CLIC-Study/
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  Need for: 

  Energy measurement accuracy 10
-4 

  Stability and ease of operation 

  Minimal impact on physics data taking 

After Blair 

Energy spectrum; impacts physics output 
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Linear Collider main parameters 

Technology ILC CLIC 

 Centre-of-mass energy (GeV)  500 500 3000 

Total (Peak 1%) luminosity (1034) 2.0(1.5) 2.3(1.4) 5.9(2.0) 

Total site length (km) 31 13.0 48.3 

Loaded accel. gradient (MV/m) 31.5 80 100 

Main linac RF frequency (GHz) 1.3 (Super Cond.) 12 (Normal Conducting) 

Beam power/beam (MW) 20 4.9 14 

Bunch charge (109 e+/-) 20 6.8 3.72 

Bunch separation (ns) 176 0.5 

Beam pulse duration (ns) 1000 177 156 

Repetition rate (Hz) 5 50 

Hor./vert. norm. emitt (10-6/10-9) 10/40 4.8/25 0.66/20 

Hor./vert. IP beam size (nm) 640/5.7 202 / 2.3 40 / 1 

Hadronic events/crossing at IP 0.12 0.19 2.7 

Coherent pairs at IP 10 100 3.8 108  

Wall plug to beam transfer eff 9.4% 7.5% 6.8% 

Total power consumption (MW) 216 129.4 415 

Delahaye, ICHEP10 
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The heart of the ILC 
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CLIC 

Compact 

LInear 

Collider 
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Main Beam 

Generation 

Complex 

CLIC – overall layout  

Drive Beam 

Generation 

Complex 
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Decision point for the LC  

• 2½  key facts are needed 

1. Is there a light (<200 GeV/c2) Higgs? 

2. Is there New Physics (below 1 TeV)? 

½ If yes, what is the energy range? 

• Note: 

– It does not matter much from the point of view of defining the 

decision point what the answers to these questions are – only that 

we know them! 

– The 1st  question may be answered by end 2012 

– The 2nd question may be answered by end 2011 

• The ½ question may not be clear for some time 

– We need to define criteria for making a “fact” 

• Is 3s enough for evidence? 

• Is 98% enough to exclude? 

– Do we need the answers to both to proceed? 

• (KJP) yes (politically) 

• Reach of LC wrt HE-LHC or HL-LHC? 
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THE HIGH LUMINOSITY FRONTIER 
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When is luminosity more important than energy? 

• Suppose we know a particle exists 

– What are its properties? 
• Charge is easy 

• Mass – depends upon the precision 

• Spin & parity – need statistics 

• Decay modes and dynamics 
– Common decay modes – spin-parity analysis 

– Rare decay modes – new physics! 

 

 

 

 

 

– Needs large statistics 

– High luminosity 

? 
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“Factories” 

• Several particle factories built 

– “b-factories” (KEKB and PEPII) 

• High statistics studies of Bd decays 

– “(tau-)charm factories” BEPC 

• High statistics studies of J/, ’ & t decays 

– “Phi-factory” (Frascati) 

• High statistics studies of f decays 

– (Actually, fK1K2, which is the real interest) 

– (Also, e+e-
p+p-  & other final states below 3 GeV 

for (g-2)m corrections) 

• Future? Neutrino Factory? 
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R = s(e+e-
hadrons)/s(e+e-

m+m-) 

• Large cross-
sections in e+e- 
when a “new 
quark” is 
discovered … 

– s (f) 
 KK 

– c (J/,’, (2S)) 
 DD 

– b (…(4S),(5S)) 
BB 

 with low 
continuum 
backgrounds 
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Charm factories 

• Originally SPEAR @ SLAC in Palo Alto 

• Then BEPC @ IHEP in Beijing 

• Then CLEO-c @ Cornell 

• Then BEPC-II @ IHEP in Beijing 

 

– Not discussed – impact of physics on the 

design between the f-factory and the 

(symmetric) -factory (CLEO-I & CLEO-II) 
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Example: fKSKL 
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LNF-INFN 

Frascati 
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Why a f factory? 

• Observing the KS decay (left) produces a pure KL 
beam (right) 
– Study (rare) KL physics 

• Observing the KL decay (right) produces a pure 
KS beam (right) 
– Study (rare) KS physics 

• Observing the KS decay (left) and a KL decay 
(right) 
– Study (EPR) quantum interference 

KS KL 
f 

p+ 

p- p+ 

p- 
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Why a B factory? 

• Exactly as in the Kaon system 

– … but ct(K) = 2.68cm (S) and 15.34m (L) 

–     and ct(b) = 0.44mm (t~1.64ps) 

• impossible to measure the flight path and separate 

the two sides … 

– Beam spot size >> decay length 

• Can measure t+t  but not t-t, which contains the 

CP-violation information 

B B (4S) 

e+ 

e- q,ℓ+ 

q-ℓ- 
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Why an asymmetric B factory? 

• Say e+=3 GeV, e-=9 GeV;  s=10.4 GeV 

(4S) 
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“Golden Channel” - B0B0
KSJ/ 
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Next 

generation 

B-factories 

B Factories (PEPII&KEKB) to SuperB and 

 SuperKEKB @ high luminosity frontier 

40 times higher 

luminosity 

1036 

      
KEKB 

Delahaye, ICHEP10 
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The SuperB Factory 
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The SuperB factory 
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6 

Major parameters 

B Factories  

Delahaye, ICHEP10 
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Precision Summary 

• Precision Frontier machine require 

– Very high luminosity 

• Peak and integrated 

– Highly tuned beams 

• Energy, spot size, [purity] 

– High reliability 

• Down time costs integrated luminosity 

– Limited flexibility 

• Modest  changes in energy 

– Low machine backgrounds 

• Otherise background limits luminosity 
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NEUTRINO BEAMS & FACTORIES 

(see also seminar by Ken Long) 
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Neutrino Physics 

• 1950’s and early 60’s 

– Nature (and existence) of the neutrino  

• (Reines & Cowan, Lederman, Schwartz and Steinberger) 

• Late 1960s, 1970s, 1980s 

– Structure of the nucleon 

• F2, xF3 etc 

– Structure of the weak current 

• Neutral currents, sin2qw etc 

• Now, and future 

– Nature of the neutrino 

• Neutrino Mass and Neutrino Oscillations 

• Standard Model assumption of massless neutrinos is wrong! 

– Note: difficult to add neutrino mass to SM a la Higgs 

– Lack of Charge  additional mass-like (Majorana) terms 

New 

facilities 

allow 

old 

physics 

to be 

done 

much 

better 
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What to Measure? 

Neutrinos 

  ne disappearance 

ne  nm appearance 

ne  nt appearance 

 

  nm disappearance 

nm  ne appearance 

nm  nt appearance 

 

… and the 

corresponding 

antineutrino 

interactions 

Note: the beam requirements for these experiments are: 

high intensity   known flux 

known spectrum   known composition  

    (preferably no background) 
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Conventional Neutrino Beams 

• Main components 

– Proton Beam 

• Energy, Intensity, 

frequency 

– Target 

– Horn (focussing) 

– Decay Region 

– Beam Dump 

– Detector 

Proton Beam Target Horn 
Decay 

Region 
Beam 

Dump 
Detector 

Note 

For any (class of) experiment 

Nev        P            M          ( En) 

                    Beam     Target     Neutrino            

     Power      Mass       Energy 
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Example of a Neutrino Beam 

CERN Neutrinos to Gran Sasso at CERN SPS 

450 

GeV 

Why Change? 
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Another neutrino mystery 
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What was the fuss about? 

This anomaly corresponds to a relative 

difference of the muon neutrino velocity with 

respect to the speed of light  

(𝑣−𝑐)

𝑐
= (2.48 ± 0.28 𝑠𝑡𝑎𝑡 ± 0.30 𝑠𝑦𝑠𝑡 ) × 10−5. 
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Is it true? 

• (sadly) probably not 

– The experiment may not be “wrong” 

 but may be less exciting than proving  

“Einstein was wrong” 

 and might nevertheless be 

“interesting physics” 

 

• “Good science” means 

– Observing 

– Reporting 

– Speculating 

– Experimenting 

– Repeating  

– Explaining 

 



Ken Peach   CERN Accelerator School,, Chios, Greece,  September 29th 2011   56 

The “Off Axis” trick 

• Short baselines (~100m) have large acceptances (~10mr) 

Pn,L 

GeV/c 

Pn,T 

GeV/c 

0.03 

1 2 3 4 5 

-0.03 

• Long baselines (>100km) have small acceptances (~10mr) 

– Similar spectrum 

• Long baselines Off Axis 

– Different spectrum 

D. Beavis et al., “Long Baseline Neutrino Oscillation Experiment, E889, Physics Design Report,”  BNL-52459, (1995) 
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T2K & Nona 

295km 

<En>~0.7GeV 
Tokaimura Kamioka 

4MW 50GeV Protons 
0.54Mton Kamiokande 

Ash River 
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Very Long Baseline Neutrino Oscillations 
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Accelerating muons – (g-2)m 
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me conversion 

(Yoshi Kuno) 

Br(m- + Al  e- + Al) < 10-16 Br(m- + Ti  e- + Ti) < 10-18 
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MUON COLLIDER 

See Ken Long’s seminar 
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NUCLEAR PHYSICS 
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Accelerated heavy ions 

• Studies of nuclear properties 

– New superheavy (> uranium) elements 

– Nuclear structure 

–  Two techniques 

Isotope separation  “in-flight” 
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EURISOL 
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FAIR (Darmstadt) 
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OTHER SCIENCE APPLICATIONS 
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ISIS - Neutron Beams 

600 Experiments/year 

1200 Users/year 

235 UK Groups 
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Neutron Facilities 

Demand for 

growth in 

capability 

and capacity 
 

Declining 

number 

available  

world-wide 



Ken Peach   CERN Accelerator School,, Chios, Greece,  September 29th 2011   69 

The Spallation Sources 
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The China Spallation Neutron Source 
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The Diamond Synchrotron 
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Progress in light sources! 

After Bartolini 
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Examples of use of Synchrotron Radiation 

CCLRC/SRD 

annual report 
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The X-ray Free Electron Laser 
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The X-ray Free Electron Laser 
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LASER-PLASMA ACCELERATORS 
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Plasma accelerators driven by TW lasers 

Tajima & Dawson Phys Rev. Lett. 43 267 (1979) 

Hooker, Oxford 
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Nonlinear plasma waves 

– Plasma frequency 

decreases with 

intensity. 

– Wavefronts of 

plasma wave 

become curved. 
– At very high 

intensities reach 

the “blow-out” or 

“bubble” regime. 

Pukhov et al.  Appl. Phys. Lett. 74 355 (2002) 

Hooker, Oxford 
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Generation of quasi-monoenergetic beams 

– Three milestone results  
(Nature at end of 2004) 

• Karl Krushelnick (Imperial College, UK) 

• Victor Malka (LOA, France) 

• Wim Leemans (Lawrence Berkeley, USA) 

 

 

1st evidence  

quasi-monoenergetic electron beams 

Hooker, Oxford 
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Generation of quasi-monoenergetic beams 

S. D. Mangles et al. 

Nature 431 02939 

(2004) 

C. G. R. Geddes et al. 

Nature 431 02900 (2004) J Faure et al. 

Nature 431 02963 (2004) Hooker, Oxford 
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Generation of quasi-monoenergetic beams 

– Typical output parameters: 

• Output energy: 100 - 170 MeV 

• Energy spread: 2.5 - 8% 

• Bunch charge: 20 - 500 pC 

• Normalized emittance: 1-2 π mm mrad 

Hooker, Oxford 
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Laser-Driven FELs 
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Laser Driven Plasma Ion Acceleration 

After Borghesi/QUB 
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Typical results (Vulcan) 

After Borghesi/QUB 
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New mechanism - Radiation Pressure Acceleration (RPA) 

 

FR  (1+ R)A
IL

c

Acceleration  by Radiation Pressure: 

 

 v i 
(1+ R)t

minid

IL

c

•Cyclical re-acceleration of ions  

•Narrow-band spectrum (whole-foil acceleration)  

•Energy transfer more efficient as ions approach 

relativistic regime 

• Issues :  Stability of acceleration 

 Electron heating: 

  Competition with TNSA 

  Target disassembly 

• Dominant mechanism at I~ 1023 W/cm2 

 GeV acceleration in a single  laser cycle!!    

 

T.Esirkepov et al,  PRL, 92, 175004 (2004) 

e- Z+ 
In ultrathin foils the laser push on 

electrons may lead to the  detachment of 

a portion of the foil (light sail) 

W ~ I2   
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B. Qiao et al, Phys Rev Lett,102,145002 (2009) 

+ ultra-thin target @ 1021-1022 W/cm2 

   promising for 0.1-1GeV acceleration    

Circularly polarized pulses  

   suppress hot electron production 

   suppress TNSA  

   limit target disassembly  

Radiation Pressure Acceleration 
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electron driven plasma acceleration 

Blumenfeld et al, SLAC-PUB-12363 

Energy doubled! 

  
  
  

8
5

 c
m

! 
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Prospects for laser-plasma accelerators 

• Laser-plasma accelerators: enormous progress: 

– Electrons 

• Demonstration of quasi-mononergetic beams 

• Increase of output energy to 1 GeV 

• Demonstration of controlled injection 

– Protons & ions 

• Similar dramatic progress 

– Many groups, many plans 

• Beam-driven plasma accelerators 

– “Energy doubling” @SLAC (electrons) 

– Protons-excited plasmas  

– FACET @ SLAC, something @ CERN 
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INDUSTRIAL ACCELERATORS 
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Industrial uses 

1. Cyclotrons for radio-isotope production 

2. Ion implantation (electrostatic, linear)  

3. Sterilisation 

4. Fusion reactors 

5. (coming?) security applications 

6. ADSR? 
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Industrial Accelerators 

• Direct Voltage 

– Van de Graaf, Cockcroft Walton … 

• Protons, ions to a few MeV (~5) 

• Linacs 

– Electron beam 

• Up to 16 MeV 

– Ion beam 

• Up to ~70 MeV 

• Rings 

– Cyclotrons 

• Ions up to ~70+ MeV 

– Betatrons  

• Electrons up to a few 10s of MeV 

– Synchrotrons  

• Up to several GeV 
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Ion Implantation 

• Semiconductors 

– Precision composition 

• Metals 

– hardening 

• Glass 

– Hardening 

– Modified optics 

 

 

 

 

 

 

• Note: All digital electronics depends upon ion implantation 
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Electron Beam Materials Processing 

• Usually low energy 

– Few hundred keV 

– Precision engineering 

 (cutting, welding) 
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Electron Beam Irradiators 

• Low energy (<300 keV) 
• Curing, laminating  

– up to 1 MeV 

• Also polymerisation 

• Medium energy (<5 MeV) 

– Polimerisation 

– Sterilisation (medical) 

• High Energy (~10 MeV) 

– Food irradiation 

– Waste water treatment 

– Gemstone colour enhancement 
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MEDICAL – CANCER THERAPY 
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Radiotherapy – photons and protons 

• Conventional radiotherapy uses x-rays to destroy cancer cells 

– But higher energy than the x-rays used for radiography 

Dose 

Linac 

• Charged particle therapy uses protons to destroy cancer cells 
 

Dose 

Proton 

The Bragg Peak 

Ken Peach  (PTCRi, Oxford)     Physics, Accelerators and Cancer  Nottingham, 18th November 2010
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X-rays compared with protons 

X-rays protons 

Ken Peach  (PTCRi, Oxford)     Physics, Accelerators and Cancer  Nottingham, 18th November 2010
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Photons, Protons and Carbon 
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Linacs with on-Board Imaging 

MV EPID 

kV imager 

kV X-ray tube 

MV Beam 

Remote 

couch 

control 
Liz Macauley/ORHT 

Ken Peach  (PTCRi, Oxford)     Physics, Accelerators and Cancer  Nottingham, 18th November 2010
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Inside … 

Image courtesy of the Stanford Linear Accelerator Center  

Ken Peach  (PTCRi, Oxford)     Physics, Accelerators and Cancer  Nottingham, 18th November 2010
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The Clatterbridge Centre for Oncology 

• Established 1989  

– Douglas 62 MeV 

cyclotron 

– First hospital based 

proton therapy  

– >1700 patients with 

ocular melanoma 

– First example of 3D 

computer treatment 

planning in UK; 

•  eye gaze direction 

used to obtain best 

approach angle to eye.  

After Bleddyn Jones 
Courtesy Clatterbridge 

Ken Peach  (PTCRi, Oxford)     Physics, Accelerators and Cancer  Nottingham, 18th November 2010
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The IBA solution 

IBA 

University of Florida 

Proton Therapy Institute 

Ken Peach  (PTCRi, Oxford)     Physics, Accelerators and Cancer  Nottingham, 18th November 2010
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What the patient sees 
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 non-scaling FFAGs 

• Fixed Field Alternating Gradient 

– See Ken Long 

• EMMA – Electron Model with Many Applications 

– “Proof of Principle” 

– Relativistic – fixed frequency 

• Does a linear EMMA-like machine work 

– For protons? 

• Relativistic – yes 

• Non-relativistic - no  

– Too dense a lattice 
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EMMA & PAMELA 

PAMELA

RING 
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From EMMA to PAMELA 

The EMMA lattice 

 

• Doublet structure 

– Focus and Defocus 

• Dense lattice 

– Little space between 

magnets 

• Lots of RF Acceleration 

– Almost every other cell 

The PAMELA lattice 

 

• Triplet structure 

– Focus, Defocus, Focus 

• Less Dense lattice 
– Long straight sections 

• Less of RF Acceleration 

– Larger cavities 

– Lower frequencies 

• Larger radius 
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PAMELA Layout  

Carbon source & 

injection 

Proton source & 

injection 

Carbon ring 

Transfer line 

Extraction 

~12m 

Proton ring 
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Working Point and Tunes 

• Working point 

– High k (38) 

• minimize orbit excursion 

• Machine tune variation       
(cell tune variation*12): [decapole] 

– νx within 0.0476  

– νy within 0.0528 

– Well within an integer! 

• Beam sensitivity 

– Amplification factor 5.8 (h) 

–         9.5 (v) 
(A = orbit distortion [mm] / 

1σ alignment error [mm]) 

horizontal vertical 

Proton Ring 
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Magnetic Lattice 
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Magnet Requirements 

• Non-scaling, non-linear FFAG 

– Multipoles up to decapole 

• Challenges 

– Maximum field (4.25T) 

– Length restriction (314 mm) 

– Required bore (>250 mm) 

• Magnet options 

– n/c Iron cored magnets 

– Superferric coils 

– S/C cos(q) magnets 

– S/C Double-helix coils 

 

• Choose: Double-helix coils 
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Double-Helix Principle 
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Smart way of creating a cosine-theta magnet 

Main advantage for PAMELA: No coil end problem 

+ 

Double-Helix 
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Conclusion 

• Accelerators have an exciting future 

– in particle physics 

• LHC, LC, CLIC, NF, factories … 

– in other sciences 

• Light sources, FELs, spallation sources… 

– in society 

• Industry 

• Medical accelerators (isotopes, hadron-therapy…) 

• And they are fun too! 


