Insertion Devices

CERN Accelerator School, Chios 2011

Intermediate Level Course, 26.09.11

Markus Tischer, DESY, Hamburg

Outline

- Generation and Properties of Synchrotron Radiation
- Undulator Technology
- Interaction of IDs with e-Beam
- Magnet Measurements and Tuning

In memoriam Pascal Elleaume

Countless contributions to

FELs … Insertion Devices … Accelerator physics

Major share in the establishment of permanent magnet based undulators

Development of several new ID concepts and related components

Development and refinement of new ID technologies like in-vacuum undulators

Realization of diverse new measurement and shimming techniques

Elaboration of various simulation and analysis software

Investigation of interaction of IDs with the e-beam

Contributions to SR diagnostics

1956-2011

Insertion Device

Idea

- Oscillating magnetic field causes a wiggling trajectory \rightarrow Emission of synchrotron radiation
- So-called "Undulators" or "Wigglers" are often "inserted" in straight sections of storage rings \rightarrow "Insertion Device"
- Period length $~15$ 400mm, magnetic gap as small as possible $(5$ 40mm)

Purpose

- **Intense synchrotron radiation source in electron storage rings**
- Emittance reduction in light sources (NSLS II, PETRAIII)
- Beam damping in colliders (LEP,)

Undulators in PETRA III at DESY

M. Tischer | Insertion Devices | CAS Chios Sep. 2011 | **Page 4**

Synchrotron Radiation Sources & Brilliance

Spectral characteristics of different SR-sources Development of brilliance: 15 orders of magnitude

FEL: Peak-brilliance another ∼8 orders ↑

[B] = photons/sec/mm2/mrad2/0.1%bw

Brilliance = Photon flux at energy E within 0.1% bandwidth normalized to beam size and divergence

$$
B = \frac{\mathcal{F}_n}{4\pi^2 \sum_{x} \sum_{y} \sum_{x}' \sum_{y}'} \qquad \text{(often used as figure of merit)}
$$

Principle of Synchrotron Radiation

- **electromagnetic radiation**
- **Angular distribution like for electric Dipole**
- **Acceleration induced by Lorentz force**

$$
\vec{F} = \frac{d\vec{p}}{dt} = m_0 \gamma \frac{d\vec{v}}{dt} = e\vec{v} \times \vec{B}
$$

i.e. transverse acceleration in a storage ring

• **Radiated power**

$$
P = \frac{e^2 c}{6\pi \varepsilon_0 \left(m_0 c^2\right)^4} \frac{E^4}{\rho}
$$

M. Tischer | Insertion Devices | CAS Chios Sep. 2011 | **Page 6**

• natural opening angle $\sim 1/\gamma$ = 0.06-0.5mrad

e.g. ESRF, PETRA3: 1/(1957x4.5[GeV]) = 85µrad

Dipole Radiation

- \cdot Due to the narrow opening cone (Θ =1/ γ) **the observer will see only a short light pulse** with duration $\Delta t \sim \rho/c\gamma^3$
- •**This results in a broad continuous Fourier spectrum with a characteristic frequency**

 $\omega_c \sim c \gamma^3/\rho \sim E_e^2 \cdot B$ $(*10^{19} \text{ Hz} \rightarrow \lambda \sim 1\text{Å})$

or "critical" energy *Ec*

 E_c [keV] = 0.665 $\cdot E_e^2$ [GeV] $\cdot B_o$ [T]

(ESRF, PETRA: E_c ~20keV)

Dipole Radiation

• **Linearly polarised in orbit plane**

Electron Trajectory in an Insertion Device

Lorentz force

$$
\vec{F} = \gamma m_0 \frac{d\vec{v}}{dt} = e\vec{v} \times \vec{B}
$$

with $\gamma = \frac{1}{\sqrt{1 - \beta^2}}, \ \beta = \frac{v}{c}$

Assume small angular deflections v_x , $v_y \ll v_z \sim c$

Equations of motion:

$$
x'' = \frac{d^2x}{dz^2} = -\frac{e}{\gamma m_0 c} (B_y - y'B_z)
$$
 with $\dot{x} = \frac{dx}{dt} = \frac{dx}{dz} \frac{dz}{dt} = x'\dot{z}$, $\dot{z} = \beta c \approx \text{const}$, $\beta \approx 1$

$$
y'' = \frac{d^2y}{dz^2} = -\frac{e}{\gamma m_0 c} (x'B_z - B_x)
$$

For a sinusoidal vertical field $(0, B_v, 0)$:

$$
B_y = B_0 \sin\left(\frac{2\pi}{\lambda_U}z\right)
$$

Displacement

x Angular deflection

$$
x' = \frac{K}{\gamma} \cos\left(\frac{2\pi}{\lambda_U} z\right)
$$

$$
x = \frac{\lambda_U}{2\pi} \frac{K}{\gamma} \sin\left(\frac{2\pi}{\lambda_U} z\right)
$$

 $\frac{c}{2\pi m_0 c} B_0 \lambda_U = 0.934 B_0$ [T] λ_U [cm] $B_0 \lambda_U = 0.934 \ B_0 [\text{T}] \ \lambda_U$ $m_0 c$ $K = \frac{e}{2} B_0 \lambda_U = 0.934 B_0$ [T] λ_I $=\frac{1}{2\pi}$ with the so-called **Deflection Parameter** *K*

Maximum angular deflection angle $\delta = \pm K/\gamma$ *K* is a measure for the strength of the insertion device

Wigglers

• *K***-parameter:** *K* **>> 1, typ.** *K* **> 10 Opening angle of the emitted SR** $\delta = \pm K/\gamma$ \rightarrow **spatial power distribution** (typ. ~mrad)

Intensities of all poles add up (incoherently) $Flux_{Wioder} = 2 \cdot N \cdot Flux_{Diopole}$ (for equal E_c) Æ**High intensities**

→High photon energies

Critical energy: *Ec* **[keV] = 0.665***Ee ²***[GeV]** *B0***[T]**

Emitted total power of a wiggler or undulator with length $L=N\lambda_{U}$ **:** (typ.: 50kW)

 P_{tot} = 0.633 \cdot *B*₀² [T] \cdot *L* [m] \cdot *E*_e² [GeV] \cdot *I*_e [A]

Polarisation of wiggler radiation: linearly polarised in the orbit plane $\nu=0$, **unpolarised out of plane**

Undulator Radiation

Consider K<<1:

- Maximum angular deflection is much smaller than the opening angle of the radiation cone
- Observer can fully follow the sinusoidal trajectory
- Wavelength of the emitted light $\lambda_R \sim \lambda_U$ is drastically shortened due to relativistic effects:

Time for the e- to travel one period:
$$
\lambda_U / c\overline{B}_z
$$

In this time the wavefront from P will propagate: $\lambda_U / \overline{B}_z$
Constructive interference for: $d = \lambda_U / \overline{B}_z - \lambda_U \cos \theta = n\lambda_R$

$$
\rightarrow \qquad \left(\lambda_R = \frac{\lambda_U}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta_x^2 + \gamma^2 \theta_y^2\right)\right)
$$

0.950 E_e^2 GeV

$$
\lambda_R \left[\mathbf{A} \right] = \frac{13.056 \ \lambda_U \left[\text{cm} \right]}{E^2 \left[\text{GeV} \right]} \left(1 + \frac{K^2}{2} \right) \qquad \text{or} \qquad E_1 \left[\text{keV} \right] = \frac{0.950 \ E_e^2 \left[\text{GeV} \right]}{\lambda_U \left[\text{cm} \right] \left(1 + K^2 / 2 \right)} \tag{on-axis}
$$

typically: $K = 1$ 3, $\lambda_U = 1$ 5 cm $\rightarrow \lambda_R \sim$ nm Å

M. Tischer | Insertion Devices | CAS Chios Sep. 2011 | **Page 11**

Higher Undulator Harmonics

- •Constant propagation velocity along trajectory *s*
- •Drift velocity along the averaged propagation direction *z* does vary
- •Electron motion in its rest frame corresponds to a figure 8

•Larger *K*-parameter \rightarrow stronger modulation of v_z

\cdot The modulation of v_z is the reason for the **occurance of higher undulator harmonics**

(usually highly desired!)

Odd and Even Undulator Harmonics

Transverse oscillation → Odd harmonics → on-axis emission Longitudinal oscillation \rightarrow Even harmonics \rightarrow off-axis radiation

Undulator ... → ... Wiggler

Spectral and Spatial Distribution of SR

(for a filament e-beam)

$$
\frac{d^2 \mathcal{F}}{d\omega d\Omega}\bigg|_{\theta_{x,y}=0} \propto N^2 \sum_{n=1,3,5...}^{\infty} H_n(\omega,\theta) \cdot \boxed{F_n(K)} \qquad \qquad H_n(\omega,\theta) = \frac{\sin^2 x}{x^2} \qquad \text{with} \quad x = N\pi \frac{\Delta \omega}{\omega_1(\theta)} = N\pi \left(\frac{\omega - n\omega_1(0)}{\omega_1(0)} - \frac{\omega}{\omega_1(0)}\gamma^2 \theta^2\right)
$$

Spectral dependence $H(\omega, \theta=0)$ **(Energy domain)**

of an undulator harmonics along beam axis

Spectral width
$$
\frac{\Delta \lambda}{\lambda} = \frac{\Delta \omega}{\omega} = \frac{1}{nN}
$$

Angular intensity distribution (Spatial domain)

Natural source size and divergence

but Gaussian approx. not always accurate

(typically 1-10µm 1-10µrad)

 $\overline{}$ $\overline{}$

·

Undulator: Photon Flux

On-axis flux density [*phot./sec/mrad2/0.1%bw***] in practical units:**

$$
\frac{d\mathcal{F}_n}{d\Omega}\bigg|_{\theta_{x,y}=0} = 1.744 \times 10^{14} \, N^2 \, E^2 \big[\text{GeV} \big] I_e \big[\text{A} \big] \, F_n \big(K \big) \quad , \, (n=1,3,5...)
$$

Integrated over the "central cone" \rightarrow Flux **[***phot./sec/0.1%bw***]:**

$$
\mathcal{F}_n = 1.431 \times 10^{14} N I_e[\text{A}] Q_n
$$

Tuning of Photon Energy

M. Tischer | Insertion Devices | CAS Chios Sep. 2011 | **Page 17**

Emittance Effects

e-Beam emittance ε

$$
= \sigma_{x,y} \cdot \sigma'_{x,y}
$$

- Broadening of undulator harmonics
- Intensity reduction

(Light sources: $\varepsilon_x \sim 1-450$ nm rad, coupling $\kappa = \varepsilon_x/\varepsilon_x \sim 1\%$)

Spectral Effects:

- **Red shift** with a low energy tail
- **Even harm.** of off-axis electrons get visible on-axis
- Symmetric broadening due to **energy spread Δ**γ/γ of electrons $(typ. ~0.1\%)$

$\varepsilon_{x,y} = \sigma_{x,y} \cdot \sigma_{x,y}'$ | Spatial Effects:

• Enlargement of **size** and **divergence** of the emitted photon beam

$$
\Sigma_{x,y} = \sqrt{\sigma_{x,y}^2 + \sigma_R^2} \qquad , \qquad \Sigma_{x,y} = \sqrt{\sigma_{x,y}^2 + \sigma_R^2}
$$

Spectral intensity distribution (at fixed gap!), integrated over **different apertures:**

 25×25 urad², 50×50 urad², 100×100 urad² and 200×200 urad²

Undulator Technology: Support Structure

(installed e.g. at PETRA III or sFLASH)

Various requirements:

Minimum girder deformation Changing magnetic forces up to ~100kN Gap accuracy of \sim **1µm** (1µm \approx 1 Gs) **Possibility for taper up to ~1mm Temperature insensitivity**

> **Gap measurement system fully decoupled from load support**

Magnet Technology

Magnetic force

$$
F = \frac{B_0^2 L W}{4 \mu_0}
$$

Area *L* x *W* of magnet structure

 $F[N] \approx 2.10^5 B_0^2$ [T] $L[m]$ *W*[m]

Peak field

$$
B_0 = a e^{\left(b \frac{g}{\lambda_U} + c \left(\frac{g}{\lambda_U}\right)^2\right)}
$$

for \sim 0.1 g/ λ _{*U*} 1

M. Tischer | Insertion Devices | CAS Chios Sep. 2011 | **Page 20**

Permanent Magnet Technology

Hybrid design

- **higher field**
- **field quality limited by**
- **mechanical tolerance of poles**
- **block errors**

Pole (Steel, CoFe) Magnet (NdFeB, SmCo)

Magnet materials

Latest development: Vapor diffusion of Dy into grain boundaries of NdFeB \rightarrow Hcj increase by >300kA/m !

Pure permanent magnet (ppm)

- **simpler to compute and to correct**
- **field quality limited by**
	- **block errors**

PM issues:

- Magnetic errors imprinted during pressing (Br, angular errors, N/S-effect)
- Radiation hardness
- Temperature resistivity $(\rightarrow$ SmCo)
- Machining (NdFeB is a little less britle)
- Expensive (both)

In-Vacuum Undulators

Widely used at many SR sources Originally developed at NSLS, SPring-8, ESRF Minimum magnetic gap of 3-6mm

SACLA -XFEL(SPring-8) IVU $L=18x5m$, $\lambda_U=18mm$

> Flexible taper transitions require careful design

SLS

Cryogenic In-Vacuum Undulator

- **Increased coercivity at cryogenic temperatures (~130K)** $→$ **choice of high B_r material, high resistance against demagnetization**
- **Increased remanent field (Br) at low temperatures** $→$ **higher fields at same period length, i.e. larger energy tunability**
- **Modification of mechanical design (thermal deformation, therm. Isolation), use of cryo-coolers**
- **Development of magnetic measurements and tuning techniques at cryogenic temperatures**

T. Hara, T. Tanaka, SPring-8, PRST-AB 7 (2004)

• **Some IDs already built or in operation (ESRF, SLS, Diamond, Soleil)**

Helical / Elliptical Undulators

Apple2 Undulator: Principle

Split magnet rows (movable along the beam)

- **variable polarization**
- **high field**
- **planar structure**

Shift = 0 horizontal linear polarization Shift = λ /2 vertical linear polarization

Parallel motion \rightarrow circular/ellipt. polarization Antiparallel motion \rightarrow 45deg linear polarization

APPLE2 – UE65 at PETRA III

 $L = 5$ m, $\lambda_U = 65.6$ mm, gap = 11 mm *B_{eff}* = 1.04T, K_{eff} = 6.4 (circ.mode) *E1* **circ = 245eV ~ C** *K***-edge**

 P_{tot} = 13 kW, $dP/d\Omega$ = 0.12 W/µrad² (very low!)

- **Additional large transverse and longitudinal magnetic forces in antisymm. mode**
- **Requires detailed optimization of mechanical support**
- with 4-axes drive: \rightarrow deformation can be partly **compensated** (J.. Bahrdt et al., conf. proc. SRI09)

Maximum forces and torques

Asymmetric & Elliptical Wiggler

5.3 GeV , $\gamma = 10371$

 -0.5 $\mathbf 0$ 0.5

 -1

Photon Factory / KEK

 1.0

 0.5

 0.0

 -0.5

 -1.5

 B_y (Tesla)

• **magnetically delicate (large field integrals)**

 θ (mrad)

 1 1.5

• **mechanically simpler** • **2 source points (on-axis: 1)**

High Field Devices

Permanent magnet devices | Superconducting devices

• **Hybrid Wiggler (DESY)** *B*=2T, λ _{*i*}=11cm, *K*=21, *L*=4m, *E_c*=27keV,

- **3.5T Wiggler (Elettra, MAX-Lab)** ^O*U***=61mm, gap=10.2mm, 46 poles**
- **Superbends (ALS, BESSY, SLS) :** *B***=3-9T**

• **10T Wavelength Shifter**

(Spring8)

• **Multipole Wiggler (HMI, BESSY)** *B***=7T,** *K***=92, 13 poles,** *P***=56kW !**

M. Tischer | Insertion Devices | CAS Chios Sep. 2011 | **Page 28**

B=3.1T, $λ_U$ =378mm, 11mm gap

Superconducting Undulators

Goal: Short period, higher field, harder X-ray spectrum

Technology: NbTi or Nb₃Sn, cold bore, cryo-coolers iron poles contribute to the field by ~1/3

Challenges:

- **Preservation of accuracies towards low temperatures** field errors due to therm. expansion, winding errors and large forces on conductor
- **Magn. measurements & tuning mechanisms**
- **Cryo losses**

development of special diagnostics for SR and image current effects

Developments at various labs

ANKA: NbTi

full devices (1.5m) built, to be installed shimming strategies, "cold bench" diagnostics built to study cryo losses

Daresbury: NbTi helical prototypes and full length device, planar prototypes

LBNL: Nb₃Sn λ _U=30mm, gap~10mm, *j*=6.1kA/m2, *B*=3.2T pushing new technologies, study YBCO

APS: NbTi large R&D program, several prototypes

Figure-8 Undulator

Goal: Reduction of high on-axis power density

Quasi-Periodic Undulator

Shift of the higher harmonics towards non-integer multiples

S.Sasaki et al., Rev. Sci. Instrum. 66 (1995) 1953

- Suppression of higher order radiation
- realized by modification of distinct magnets
- cleaner photon spectrum ! **(because monochromator usually transmits higher harmonics)**
- In operation at various SR facilities

Example: λ_{U} =31.4mm, gap=9.5mm, L=2m

Concept

- Like for diffraction from a quasi-crystal
- Position of poles follow a so-called Fibonacci sequence
- Easier realized by vertical pole displacements at destinct locations

Interaction of IDs with e-Beam

> In terms of beam dynamics, an insertion device should be "transparent" to the machine, i.e. behave like drift space. But there are

Intrinsic effects

- Betatron tune shifts, focusing effects induced by the nominal field of the ID
- For high field devices: Change of emittance, energy spread growth, reduction of damping time

> Effects due to field errors of the ID

- Closed Orbit Distortions (by dipole errors, gap dependent)
- Coupling (induced by skew-quad errors)
- Reduction of dynamic aperture (decrease of life time and injection efficiency)
- > Most of these effects can be avoided or corrected by careful design and manufacture, passive field shimming and active adjustments

just as a remark

- > Also vice versa: The ID might be affected by radiation background in the tunnel
	- **Any electronics must be shielded**
	- **Permanent magnets may partly be demagnetized**
	- Corrosion of permanent magnets or poles due to radio chemistry

Impact of IDs: COD, Tune shift

COD are caused by gap-dependent residual field integrals (kick and displacement) Compensation by feed-forward of small corrector coils at the ends of the ID

Example: Read-out of all BPMs around the machine while closing the undulator gap

Additional contributions to COD:

- -local distortions of the ambient field by adjacent accelerator components in the tunnel
- -shielding effects of the support structure

Focussing properties of an ID

Close to the mid plane: $B_z \approx (B_z/dy) y = (B_y/dz) y$

Vertical focussing: Any vertically displaced ewill experience a longitudinal field which bends it back towards the horizontal plane. The vertical focussing parameter is given by

$$
k_{y} = \left(\frac{e}{\gamma m_{0}c}\right)^{2} \frac{B_{y}^{2}}{2} = \frac{1}{2\rho^{2}}
$$

$$
\frac{1}{F_{y}} = \int k_{y} dz = \left(\frac{e}{\gamma m_{0}c}\right)^{2} \frac{B_{y}^{2}}{2} L
$$

This causes a **tune shift**

$$
\Delta v_y = \frac{1}{4\pi} \int \beta_y \ k_y \, dz \approx \frac{\overline{\beta}_y}{4\pi \ F_y}
$$

M. Tischer | Insertion Devices | CAS Chios Sep. 2011 | **Page 33**

Non-linear Focusing Effects

Example: **APPLE2** UE65 at PETRA III in **vertical mode**

Strong roll-off of the horizontal field causes dynamic multipole errors.

Magnetic measurement is performed along a straight line but the field integral along the oscillating electron trajectory is not zero.

Dynamic kicks of a periodic magnet structure:

Calculated dynamic multipoles:

Measurements of the horizontal (\bullet) and vertical (x) **tune shifts** as function of horizontal beam position before (blue) and after (red) placement of L-shims. Theoretical calculations (lines) for comparison..

(J. Chavanne et al., Proc. of EPAC 2000 conf.)

Magnetic Measurements and Tuning

Magnetic Measurements and Tuning

Purpose:

Measure and remove errors in the magnetic field distribution for all gaps

- Optimize the SR emission characteristics \rightarrow flatten the trajectory inside the undulator and minimize the phase error
- Make the ID "transparent" for machine operation \rightarrow remove residual field integrals and multipoles of the device for all gaps

Various Field Correction Mechanisms:

- Initial sorting of magnets, dedicated magnet flipping or swapping
- Magnet or pole height adjustment,
- Application of Fe shims or small corrector magnets
-

Hall Probe Measurement Bench

- platform on air bearings, driven by linear motor, servo drives for x, y, z axes, reproducibility $\neg \mu m$
- on-the-fly measurements, max. sampling \sim 200Hz
- temperature controlled environment (<0.5K)

Purpose:

Fast longitudinal field mapping of vertical and horizontal fields

Important for optical phase and trajectory shimming

Hall probe requires calibration, temperature stabilization

DESY

Field Integral Measurements

Purpose: Measurement of longitudinally integrated field integrals, i.e. transverse dependence of vertical and horizontal 1st and 2nd field integrals

Important for determination and shimming of multipoles

Much more accurate than Hall probes for determination of field integrals

$$
\int Vdt = -N \Delta \Phi \sim \int B_{x,y} dz
$$

Other techniques

- Vibrating Wire \rightarrow accurate determination of magnetic axis
- Pulsed Wire \rightarrow longitudinally resolved field integrals

Example: Measurement &Tuning Results

Literature

> Books

- H. Onuki, P. Elleaume, Eds., *Undulators, Wigglers and their Applications*, Taylor & Francis, London (2003)
- J.A. Clarke, *The Science and Technology of Undulators and Wigglers*, Oxford University Press, Oxford (2004)
- F. Ciocci, Ed., *Insertion Devices for Synchrotron Radiation and Free Electron Laser*, World Scientific Pub., Singapore (2000)
- J.D. Jackson, *Classical Electrodynamics*, Wiley, New York (1975)
- A. Hofmann, *The Physics of Synchrotron Radiation*, Cambridge Monographs on Particle Physics No. 20, Cambridge University Press, Cambridge (2004)
- S. Krinsky, M.L. Perlman, R.E. Watson, Chapter 2 in *"Handbook on Synchrotron Radiation"*, Ed.: E.E. Koch, Vol. 2, North-Holland, Amsterdam (1983) and other volumes from this series
- > Previous CAS Summer Schools
	- See previous contributions e.g. from R. Walker, P. Elleaume, J. Clarke, J. Bahrdt