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1 Exercise 1

1.1 Problem:

a) Compute the map:
X(L) =?

P(L) = X'(L) =?
for a thick sextupole (1D) (length L, strength k) with the equation of motion:

x”:—k-xQ

up to order O(L?), using the symplectic integration method.

b) Compute the map:
X(L) =?
for a thick sextupole (2D) with the Hamiltonian (to give the equation of motion

above):

1 1
H= gk(x?’ — 3zy®) + §(pi +p;)

using the Lie transformation method, compare with the solution from a).

1.2 Solution:

a) A solution to order O(L?) is given by a thin lens approximation with a single
kick in the centre of the element. The map can be written as a ”leap-frog”
integration:

H(L) ~ ot glah+ (L)

L
xy+ Lf(zo+ 53:6)

&\
S
Q

For the sextupole with:
7 = —k-2? = f(x)
using the thin lens approximation (type D in the lecture) gives:
z(L) = zo+xyL — %kx%LQ - %kxoxglﬁ - %kaf[fl

1
7 (L) = xy— kagl — kworyL?* — ka{?lﬁ



Map for thick sextupole of length L in thin lens approximation, accurate to O(L?)

b) In the case an element is described by a Hamiltonian H, the Lie map of
an element of length L and the Hamiltonian H is:

e—L:H: — i l(_L - H )Z (1)

|
i—0 1:

For example, the Hamiltonian for a thick sextupole is:

1 1
H= gk(QTg — 3zy®) + 5(132 +p}) (2)
To find the transformation we search for:
e HHy and e HHp, e for (3)
- <1 ,
X(L) = eMMha=3 ~(~-L:H:)2 (4)
=0 v
We can compute: 4
cH'x (5)
for sufficiently large i:
cH %z =z (6)
OH O0r OH Ox
CH e == - = = — Dz 7
* <8a: Op,  Opy 895) P (7)
cH2x=:H:(—p,) =|— — = —k(2® —? 8
o H (o) = (GO - SO @) ®
CH Pr =1 H:(—k(2* —y?)) = 9)
H _ 2 _ .2 H o 2,2
OH O(—ka® —y?) _OH o=k )\ _ o

The same for y to get 2kyp, and we have:

 H Pz = 2k(xp, — yp,) (10)

then we obtain:

1 1
X(L) = ¢ iy — ¢ + p. L — 5]@[/2(%2 — y2) - §/€L3($px - ypy) + .. (12)

Comparison with the leap-frog algorithm shows deviation of order O(L?).



2 Exercise 2

2.1 Problem:

Starting from the transfer matrix, derive the Lie operators representing:
a) a thick, focusing quadrupole
b) a thick, defocusing quadrupole

2.2 Solution:

a) The matrix for a focusing quadrupole is:

M. — cosL - K %-sinL-K
s —K-sinL-K coslL K

b) The matrix for a defocusing quadrupole is:

K

M. — coshL - K L.sinh L - K
*  \ K-sinhL-K coshl- -K

The map is represented like (see lecture):

f b b
ol o oSF eXp(_a _Cb>:a0+a1<_a _Cb>

Given a quadratic form of the type:
fo = az® + 2bxp + cp?

we know from the lecture that:

P 5., sin(vac—0%) (b ¢
e = cos(vac—b )—i——m < —a —b)

For a general 2 x 2 matrix:
M= mi1 Mi2
ma1 Moz

cos(Vac — b?) = %tT(M)

we get by comparison:

and

a 2b c vac — b2

—ma1  ma1—may  miz  sin(vac — b?)

for a Lie form of a map of the type:

6:fQ: — 6:a502+2bxp+cp2:



For a focusing quadrupole we find:
a=kL, b=0, c=L and we have:
fo = —5(kK2* + p?)

For a defocusing quadrupole we find:
a=—kL b=0, ¢c=L and we have:
fr = E(#2* — p?)



3 Exercise 3

3.1 Problem:

Assume a matrix M of the type:

M = mip M2
M2y Ma22

described by a generator f. Use the properties of Lie transforms to evaluate the
effect of this matrix on the moments z2, zp, p?:

elip? =7
ezf:pQ _9
efiap =7

3.2 Solution:

From the matrix M we can directly write:
elir = (myyx + magp)

and
e:f:p = (Ma1 T + Maap)

We know from the lecture some properties of Lie transforms (see lecture) and:
€:f:l'2 — (e:le_)Q

therefore:
(€:f:$)2 = (mpx + m12p)2

2

(e:f:x)2 :mflx + 2 myympxp + m%ﬂv2

We also can compute:
6:f:p2 — (e:f:p)Z
therefore:
(ezf:P)Z = (mo1z + m22p)2
(e:f:p)2 =m3,2% + 2 moymosrp + mi,p?

also for the moment zp:
e:f:xp — (e:f::L’) (@5f:p) (see lecture)
e:f:xp = mymyz’ + (mi1may + miamer)zp + m12m22p2

6



To summarize the moments we re-write the above in matrix form:

2 2 2

T mi, 2mi1mayo mi,

rp = M11Mao1 M11Maog + M12Mo1  M12Ma9 o
2 2 2

p may 2ma1mas Moo
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