RF Cavity Design

Erk Jensen

CERN BE/RF

CERN Accelerator School Accelerator Physics (Intermediate level) Chios 2011

Overview

- DC versus RF
 - Basic equations: Lorentz & Maxwell, RF breakdown

Some theory: from waveguide to pillbox

rectangular waveguide, waveguide dispersion, group and phase velocity, standing waves ...
 waveguide resonators, round waveguides, Pillbox cavity

Accelerating gap

- Principle, ferrite cavity, drift tube linac

Characterizing a cavity

- Accelerating voltage, transit time factor
- Resonance frequency, shunt impedance,
- Beam loading, loss factor, RF to beam efficiency,
- Transverse effects, Panofsky-Wenzel, higher order modes, PS 80 MHz cavity (magnetic coupling)

• More examples of cavities

- PEP II, LEP cavities, PS 40 MHz cavity (electric coupling),
- RF Power sources
- Many gaps
 - Why?
 - Example: side coupled linac, LIBO
- Travelling wave structures
 - Brillouin diagram, iris loaded structure, waveguide coupling
- Superconducting Accelerating Structures

DC VERSUS RF

20-Sep-2011

CAS Chios 2011 — RF Cavity Design

DC versus RF

DC accelerator

RF accelerator

Lorentz force

A charged particle moving with velocity $\ ec{
u}=-rac{ec{p}}{-}$ through an $m\gamma$ electromagnetic field experiences a force

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

The total energy of this particle is $W = \sqrt{(mc^2)^2 + (pc)^2} = \gamma mc^2$, the kinetic energy is $W_{kin} = mc^2(\gamma - 1)$.

The role of acceleration is to increase the particle energy!

Change of Wby differentiation:

$$W dW = c^{2} \vec{p} \cdot d\vec{p} = qc^{2} \vec{p} \cdot \left(\vec{E} + \vec{v} \times \vec{B}\right) dt = qc^{2} \vec{p} \cdot \vec{E} dt$$
$$dW = q\vec{v} \cdot \vec{E} dt$$

Note: Only the electric field can change the particle energy!

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

5

Maxwell's equations (in vacuum)

1)

Limit: If you want to gain 1 MeV, you need a potential of 1 MV!

 $\oint \vec{E} \cdot \mathbf{d}\vec{s} = 0$ Circular machine: DC acceleration impossible since 2)

With time-varying fields:

$$\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B} \qquad \oint \vec{E} \cdot d\vec{s} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

CAS Chios 2011 - RF Cavity Design

$$\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = 0 \quad \nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0 \quad \nabla \cdot \vec{E} = 0$$

curl of 3^{rd} and $\frac{\partial}{\partial t}$ of 1^{st} equation:

$$\nabla \times \nabla \times \vec{E} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

$$\nabla \times \nabla \times \vec{E} = \nabla \nabla \cdot \vec{E} - \Delta \bar{E}$$

with 4th equation :

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

i.e. Laplace in 4 dimensions.

CAS Chios 2011 - RF Cavity Design

20-Sep-2011

FROM WAVEGUIDE TO PILLBOX

20-Sep-2011

CAS Chios 2011 — RF Cavity Design

Homogeneous plane wave

 $\vec{E} \propto \vec{u}_{y} \cos(\omega t - \vec{k} \cdot \vec{r})$ $\vec{B} \propto \vec{u}_{x} \cos(\omega t - \vec{k} \cdot \vec{r})$ $\vec{k} \cdot \vec{r} = \frac{\omega}{c} (\cos(\varphi)z + \sin(\varphi)x)$

Wave vector \vec{k} : the direction of \vec{k} is the direction of propagation, the length of \vec{k} is the phase shift per unit length. \vec{k} behaves like a vector.

 \overline{z}

Wave length, phase velocity

• The components of \vec{k} are related to the wavelength in the direction of that component as $\lambda_z = \frac{2\pi}{k_z}$ etc., to the phase velocity as $v_{\varphi,z} = \frac{\omega}{k_z} = f \lambda_z$.

Superposition of 2 homogeneous plane waves

Rectangular waveguide

Fundamental (TE_{10} or H_{10}) mode in a standard rectangular waveguide. Example: "S-band" : 2.6 GHz ... 3.95 GHz,

Waveguide type WR284 (2.84" wide), dimensions: 72.14 mm x 34.04 mm.

Operated at f = 3 GHz.

power flow: $\frac{1}{2}$ Re	$\left\{ \iint_{\substack{\text{cross}\\\text{section}}} \vec{E} \times \vec{H}^* \cdot \mathbf{d} \vec{A} \right\}$
------------------------------	---

13

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

CAS Chios 2011 - RF Cavity Design

Phase velocity

Summary waveguide dispersion and phase velocity:

In a general cylindrical waveguide:

$$\gamma = j \sqrt{\left(\frac{\omega}{c}\right)^2 - k_{\perp}^2}$$

$$Z_0 = \frac{j\omega\mu}{\gamma} \text{ for TE}, \quad Z_0 = \frac{\gamma}{j\omega\varepsilon} \text{ for TM}$$

$$k_z = \text{Im}\{\gamma\} = \frac{2\pi}{\lambda_g}$$

e.g.: TE₁₀-wave in
rectangular
waveguide:
$$\gamma = j \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{\pi}{a}\right)^2}$$
$$Z_0 = \frac{j\omega\mu}{\gamma}$$
$$\lambda_{cutoff} = 2a$$

In a hollow waveguide: phase velocity > *C*, group velocity < *C*

Rectangular waveguide modes

Radial waves

Also radial waves may be interpreted as superposition of plane waves. The superposition of an outward and an inward radial wave can result in the field of a round hollow waveguide.

CAS Chios 2011 - RF Cavity Design

20-Sep-2011

Circular waveguide modes

General waveguide equations:

 $\Delta T + \left(\frac{\omega_c}{c}\right)^2 T = 0$ Transverse wave equation (membrane equation): TE (or H) modes TM (or E) modes $\vec{n} \cdot \nabla T = 0$ T = 0boundary condition: $\frac{\mathrm{d}U(z)}{\mathrm{d}z} + \gamma Z_0 I(z) = 0$ $\frac{\mathrm{d}I(z)}{\mathrm{d}z} + \frac{\gamma}{Z_0} U(z) = 0$ longitudinal wave equations (transmission line equations): $\gamma = j\frac{\omega}{c}\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}$ propagation constant: $Z_0 = \frac{j\omega\mu}{\gamma}$ $Z_0 = \frac{\gamma}{j\omega\varepsilon}$ $\vec{e} = -\nabla T$ characteristic impedance: $\vec{E} = U(z)\vec{e}$ $\vec{e} = \vec{u}_z \times \nabla T$ ortho-normal eigenvectors: transverse fields:

longitudinal field:

20-Sep-2011

Rectangular waveguide: transverse eigenfunctions

TE (H) modes:
$$T_{mn}^{(H)} = \frac{1}{\pi} \sqrt{\frac{ab\varepsilon_m \varepsilon_n}{(mb)^2 + (na)^2}} \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right)$$

TM (E) modes:
$$T_{mn}^{(E)} = \frac{2}{\pi} \sqrt{\frac{ab}{(mb)^2 + (na)^2}} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right)$$
$$\frac{\omega_c}{c} = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

Round waveguide: transverse eigenfunctions

TE (H) modes:
$$T_{mn}^{(H)} = \sqrt{\frac{\varepsilon_m}{\pi (\chi'_{mn}^2 - m^2)}} \frac{J_m \left(\chi'_{mn} \frac{\rho}{a}\right)}{J_m (\chi'_{mn})} \begin{cases} \cos(m\varphi) \\ \sin(m\varphi) \end{cases}$$
$$(E) \text{ modes:} \qquad T_{mn}^{(E)} = \sqrt{\frac{\varepsilon_m}{\pi}} \frac{J_m \left(\chi_{mn} \frac{\rho}{a}\right)}{\chi_{mn} J_{m-1}(\chi_{mn})} \begin{cases} \sin(m\varphi) \\ \cos(m\varphi) \end{cases}$$
$$(E) \text{ where} \qquad \varepsilon_i = \begin{cases} 1 & \text{for } i = 0 \\ 2 & \text{for } i \neq 0 \end{cases}$$

CAS Chios 2011 - RF Cavity Design

Waveguide perturbed by notches

Single WG mode between two shorts

Eigenvalue equation for field amplitude *a*:

$$a = e^{-jk_z 2\ell}a$$

Non-vanishing solutions exist for $2k_z \ell = 2\pi m$:

With
$$k_z = \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}$$
, this becomes $f_0^2 = f_c^2 + \left(c\frac{m}{2\ell}\right)^2$

CAS Chios 2011 - RF Cavity Design

20-Sep-2011

One needs a hole for the beam pipe – circular waveguide below cutoff

A more practical pillbox cavity

ACCELERATING GAP

Accelerating gap

(induction cell)	gap voltage	 We want a voltage across the gap! It cannot be DC, since we want the beam tube on ground potential. Use ∫ E · ds = -∫∫ dB/dt · dA The "shield" imposes a upper limit of the voltage pulse duration or - equivalently - a lower limit to the usable frequency. The limit can be extended with a material which acts as "open circuit"! Materials typically used: ferrites (depending on <i>f</i>-range) magnetic alloys (MA) like Metglas[®], Finemet[®], Vitrovac[®] resonantly driven with RF (ferrite loaded cavities) - or with pulses (induction cell)
------------------	-------------	--

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

Ferrite cavity

Gap of PS cavity (prototype)

20-Sep-2011

CAS Chios 2011 — RF Cavity Design

33

Drift Tube Linac (DTL) – how it works

For slow particles ! E.g. protons @ few MeV

The drift tube lengths can easily be adapted.

electric field

	colour coding	
	1,0000e+00	
	9.0000e-01	
	8.0000e-01	
	7.0000e-01	
	6.0000e-01	
	5.0000e-01	
	4.0000e-01	
	3.0000e-01	
	2.0000e-01	
	1.0000e-01	
F	0.0000e+00	

<image>

Drift tube linac – practical implementations

20-Sep-2011

CAS Chios 2011 — RF Cavity Design

35

CHARACTERIZING A CAVITY

Acceleration voltage & *R*-upon-*Q*

I define $V_{acc} = \int E_z e^{j\frac{\omega}{\beta c}z} dz$. The exponential factor accounts for the variation of the field while particles with velocity βc are traversing the gap (see next page).

With this definition, V_{acc} is generally complex – this becomes important with more than one gap. For the time being we are only interested in $|V_{acc}|$.

Attention, different definitions are used!

The square of the acceleration voltage is proportional to the stored energy W. The proportionality constant defines the quantity called *R*-upon-*Q*:

$$\frac{R}{Q} = \frac{\left|V_{acc}\right|^2}{2\,\omega_0 W}$$

Attention, also here different definitions are used!

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

37

Transit time factor

The transit time factor is the ratio of the acceleration voltage to the (non-physical) voltage a particle with infinite velocity would see.

$$TT = \frac{|V_{acc}|}{\left|\int E_z dz\right|} = \frac{\left|\int E_z e^{j\frac{\omega}{\beta c^z}} dz\right|}{\left|\int E_z dz\right|}$$

The transit time factor of an ideal pillbox cavity (no axial field dependence) of height (gap length) *h* is:

Shunt impedance

The square of the acceleration voltage is proportional to the power loss P_{loss} . The proportionality constant defines the quantity "shunt impedance"

$$R = \frac{\left|V_{acc}\right|^2}{2 P_{loss}}$$

Attention, also here different definitions are used!

Traditionally, the shunt impedance is the quantity to optimize in order to minimize the power required for a given gap voltage.

CAS Chios 2011 - RF Cavity Design

20-Sep-2011

Resonance

20-Sep-2011

CAS Chios 2011 — RF Cavity Design

41

Reentrant cavity

Nose cones increase transit time factor, round outer shape minimizes losses.

Nose cone example Freq = 500.003

Beam loading – RF to beam efficiency

- The beam current "loads" the generator, in the equivalent circuit this appears as a resistance in parallel to the shunt impedance.
- If the generator is matched to the unloaded cavity, beam loading will cause the accelerating voltage to decrease.
- The power absorbed by the beam is $-\frac{1}{2} \operatorname{Re} \left\{ V_{gap} \ I_B^* \right\}$, the power loss $P = \frac{\left| V_{gap} \right|^2}{2 R}$.
- For high efficiency, beam loading shall be high.
- The RF to beam efficiency is $\eta = \frac{1}{1 + \frac{V_{gap}}{R |I_B|}} = \frac{|I_B|}{|I_G|}$.

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

45

Characterizing cavities

- **Resonance frequency**
- Transit time factor

field varies while particle is traversing the gap

- Q factor
- R/O independent of losses - only geometry!
- loss factor

$$|\mathbf{J}^{E_z \mathbf{u} \mathbf{z}}|$$

Circuit definition
 $|V_{gap}|^2 = 2 R_{shunt} P_{loss}$

 $\omega_0 = \frac{1}{\sqrt{L \cdot C}}$

 $\int E_z e^{j\frac{\omega}{c}z} dz$

$$\omega_0 W = Q P_{loss}$$

$$\frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{2\,\omega_0 W} = \sqrt{\frac{L}{C}}$$

$$\omega_{pss} = \frac{\omega_0}{2} \frac{R}{Q} = \frac{\left| V_{gap} \right|^2}{4 W}$$

 $\left|V_{gap}\right|^2 = R_{shunt} P_{loss}$

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

 k_{μ}

Example Pillbox:

$$\omega_{0}|_{pillbox} = \frac{\chi_{01} c}{a} \qquad \qquad \chi_{01} = 2.4048$$

$$\mathcal{Q}|_{pillbox} = \frac{\sqrt{2a\eta\sigma\chi_{01}}}{2\left(1 + \frac{a}{h}\right)} \qquad \qquad \eta = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} = 377 \,\Omega$$

$$\sigma_{Cu} = 5.8 \cdot 10^{7} \,\mathrm{S/m}$$

$$\frac{R}{Q}|_{pillbox} = \frac{4\eta}{\chi_{01}^{3}\pi \,\mathrm{J}_{1}^{2}(\chi_{01})} \frac{\sin^{2}(\frac{\chi_{01}}{2}\frac{h}{a})}{h/a}$$

20-Sep-2011

CAS Chios 2011 — RF Cavity Design

Higher order modes

Panofsky-Wenzel theorem

For particles moving virtually at v=c, the integrated transverse force (kick) can be determined from the transverse variation of the integrated longitudinal force!

$$\mathbf{j}\frac{\boldsymbol{\omega}}{c}\vec{F}_{\perp} = \nabla_{\perp}F_{\parallel}$$

Pure TE modes: No net transverse force !

Transverse modes are characterized by

- the transverse impedance in $\pmb{\omega}$ -domain
- the transverse loss factor (kick factor) in t-domain !

W.K.H. Panofsky, W.A. Wenzel: "Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields", RSI 27, 1957]

CERN/PS 80 MHz cavity (for LHC)

CAS Chios 2011 - RF Cavity Design

51

Higher order modes

Example shown: 80 MHz cavity PS for LHC. Color-coded:

20-Sep-2011

colour coding

Higher order modes (measured spectrum)

20-Sep-2011

CAS Chios 2011 — RF Cavity Design

53

MORE EXAMPLES OF CAVITIES

PS 19 MHz cavity (prototype, photo: 1966)

20-Sep-2011

CAS Chios 2011 — RF Cavity Design

55

Examples of cavities

PEP II cavity 476 MHz, single cell, 1 MV gap with 150 kW, strong HOM damping,

LEP normal-conducting Cu RF cavities, 350 MHz. 5 cell standing wave + spherical cavity for energy storage, 3 MV

CERN/PS 40 MHz cavity (for LHC)

20-Sep-2011

RF POWER SOURCES

RF Power sources

> 200 MHz: Klystrons

Thales TH1801, Multi-Beam Klystron (MBK), 1.3 GHz, 117 kV. Achieved: 48 dB gain, 10 MW peak, 150 kW average, $\eta = 65 \%$

< 1000 MHz: grid tubes

UHF Diacrode[®]

IOT

59

pictures from http://www.thales-electrondevices.com

20-Sep-2011

RF power sources

CAS Chios 2011 - RF Cavity Design

Example of a tetrode amplifier (80 MHz, CERN/PS)

400 kW, with fast RF feedback

 $\frac{18 \ \Omega \ coaxial \ output \ (towards \ cavity)}{22 \ kV \ DC \ anode \ voltage \ feed-through \ with \ \lambda/4 \ stub}$ tetrode cooling water feed-throughs

20-Sep-2011

CAS Chios 2011 — RF Cavity Design

MANY GAPS

What do you gain with many gaps?

• The R/Q of a single gap cavity is limited to some 100 Ω . Now consider to distribute the available power to n identical cavities: each will receive P/n, thus produce an accelerating voltage of $\sqrt{2RP/n}$.

The total accelerating voltage thus increased, equivalent to a total equivalent shunt impedance of nR.

CAS Chios 2011 - RF Cavity Design

20-Sep-2011

Standing wave multicell cavity

- Instead of distributing the power from the amplifier, one might as well couple the cavities, such that the power automatically distributes, or have a cavity with many gaps (e.g. drift tube linac).
- Coupled cavity accelerating structure (side coupled)

• The phase relation between gaps is important!

Example of Side Coupled Structure

LIBO (= Linac Booster)

A 3 GHz Side Coupled Structure to accelerate protons out of cyclotrons from 62 MeV to 200 MeV

Medical application: treatment of tumours (proton therapy)

Prototype of Module 1 built at CERN (2000)

Collaboration **CERN/INFN/TERA Foundation**

20-Sep-2011

LIBO prototype

This Picture made it to the title page of CERN Courier vol. 41 No. 1 (Jan./Feb. 2001)

TRAVELLING WAVE STRUCTURES

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

Brillouin diagram Travelling wave structure ωL/c $2\pi/$ 2π speed of light line, $\omega = \beta/c$ â π synchronous $\pi/2$ $\pi/2$ 0 ····> 0 $\pi/2$ π βL

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

Iris loaded waveguide

Disc loaded structure with strong HOM damping "choke mode cavity"

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

71

3 GHz Accelerating structure (CTF3)

Examples (CLIC structures @ 11.4, 12 and 30 GHz)

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

73

SUPERCONDUCTING ACCELERATING STRUCTURES

LEP Superconducting cavities SUPERCONDUCTING CAVITY WITH ITS CRYOSTAT

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

LHC SC RF, 4 cavity module, 400 MHz

ILC high gradient SC structures at 1.3 GHz

20-Sep-2011

CAS Chios 2011 - RF Cavity Design

77

Small β superconducting cavities (example RIA, Argonne)

pictures from Shepard et al.: "Superconducting accelerating structures for a multi-beam driver linac for RIA", Linac 2000, Monterey 20-Sep-2011 CAS Chios 2011 — RF Cavity Design