

Timing \leftrightarrow Synchronization

Goal:

- Having many systems act in sync or in a well defined sequence.
- Being able to correlate measurement data of different systems.

Timing

Event Information

- Trigger signals
- Bunch train numbering
- Beam modes, etc.

Clocks signals

- Square waves
- Adjustable delays
- Various clock frequencies

Synchronization

Passive:

When does an event happen with respect to a "perfect", periodic clock?

→ "phase information" (oscillating clock)

Active:

Apply a correction for the next event based on measurement for a previous event.

Phase noise and timing jitter

Single side-band phase noise: $\mathcal{L}_{\phi}(f_m) = \frac{\phi_{\text{rms}}^2}{\Delta f}$

 $\phi_{\rm rms}^2$ rms phase variation of carrier frequency f_0 occurring at offset frequency f_m

 Δf measurement bandwidth

Example 1: How to measure phase / timing jitter $V_{1}(t) = V_{0,1} \sin(2\pi f_{0}t) \qquad \qquad V_{2}(t) = V_{0,2} \sin(2\pi f_{0}t + \phi)$ reference $V_{1}(t) \cdot V_{2}(t)$ oscillator II to be tested Using trigonometry, we get: $V_{1}(t) \cdot V_{2}(t) = \frac{1}{2} V_{0,1} V_{0,2} [\cos(\phi) - \cos(2\pi (f_{0} + f_{0})t + \phi)]$ difference sum frequency frequency The term oscillating at twice the original frequency can be removed with a low-pass filter. $\phi = 0$ mixer measures product of amplitudes $\phi = \pi/2$ mixer measures phase difference

Example 2: IQ detection mixer $V_1(t) = V_{0,1} \sin(2\pi (f_0 - f_{\rm IF})t) / \qquad V_2(t) = V_{0,2} \sin(2\pi f_0 t + \phi)$ reference ____ O oscillator II to be tested $V_1(t) \cdot V_2(t) = \frac{1}{2} V_{0,1} V_{0,2} \left[\cos(2\pi f_{\rm IF} t + \phi) - \cos(2\pi (2f_0 - f_{\rm IF})t + \phi) \right]$ Detection of the mixer output with an ADC $\frac{1}{2}V_{0,1}V_{0,2}$ Here: ADC clocked at $4 f_{\rm IF}$ $\begin{array}{ccc} & & & I = \frac{1}{2} \left(A_1 - A_3 \right) & & Q \\ \hline & & & \\$ ADC samples • φ shifts by same amount as ϕ Scheme sensitive to ADC clock jitter Scheme measures phase relation \rightarrow Less sensitive for low IF frequency between ADC clock and IF signal

Required synchronization accuracy in accelerators

Typical bunch durations of electron accelerators

Synchrotron light sources Low-alpha Multi Bunch Hybrid Modus	BESSY	σ _z = 10mm ~ 20 ps ~ 2 ps
Linac driven colliders	SLC ILC	$\sigma_z = 2 \text{ mm} \sim 6 \text{ ps}$ = 0.15 mm ~ 0.5 ps
Free-electron lasers Short pulse operation @FLASH:	Eur. XFEL	σ_z = 20 um ~ 60 fs FEL pulses < 5 fs

Free-electron lasers and future linear colliders require a synchronization accuracy orders of magnitude better than in storage rings!

Bunch compressor principle (idealized)

Selected other sources of beam arrival-time changes			
Ream energy spread		arrival-time deviation	
1000 m long, straight trajectory,	$\delta E/E < 0.1\%$	$\delta t < 0.8\mathrm{fs}$	
Beam orbit jitter 1000 m long, straight trajectory, angular kick every 10 m	$\delta x < 50\mu{ m m}$	$\delta t < 0.04\mathrm{fs}$	
Thermal expansion	Concrete	$\delta t \sim 40 \mathrm{ps}$	
1 deg C temperature change	Concrete	$0t \sim 40 \mathrm{ps}$	
	Stainless steel	$\delta t \approx 58 \mathrm{ps}$	
	Invar	$\delta t \approx 4 \mathrm{ps}$	

Femtosecond stable timing distribution CW & pulsed optical systems

CW	Pulsed	
Transmission of 'single' frequency laser light	Transmission of ~100 - 200 fs long laser pulses	
Interferometric stabilization of an optical fiber	Stabilization of an optical fiber based on cross-correlation techniques	
Transmission of RF signal through stabilized optical fiber (by modulating laser amplitude)	After transmission fiber: • generation of RF signals • direct use of laser pulses for laser	
After transmission fiber: • extraction of RF signal	based diagnostics / experiments (e.g. bunch arrival-time measurements beam position measurements, RF phase measurements,) • locking of lasers by cross-correlation	
stability: < 10 fs	stability: < 10 fs	

Synchronization of lasers to the optical reference

CW scheme: Under development

Pulsed scheme: Highest precision by performing (two color) optical cross correlation between laser and optical reference

Synchronization of lasers to the optical reference

Ongoing efforts to synchronize various types of lasers to the optical reference pulse train at various laboratories like:

DESY: S. Schulz et al., PAC09, TH6REP091

Elettra: M. Danailov et al., 2nd Timing & Synchronization Workshop

PSI:

Courtesy of PSI Timing&Synch Team

Femtosecond bunch arrival-time monitors Electro-optic beam profile monitors

Active bunch shape stabilization at the LCLS

- Cascaded FB at 5 Hz (Matlab implementation)
- Fixed energy gain in L2 & L3 klystrons
- Change global L2 phase
- Adjust L2 & L3 energy with several klystrons at opposite phases
- Feedback uses orthogonal actuators to separate energy gain and chirp of L2

