

The LHC and Beyond

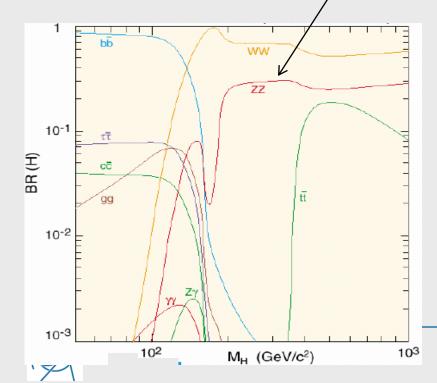
May 6, 2011 Sergio Bertolucci **CERN**

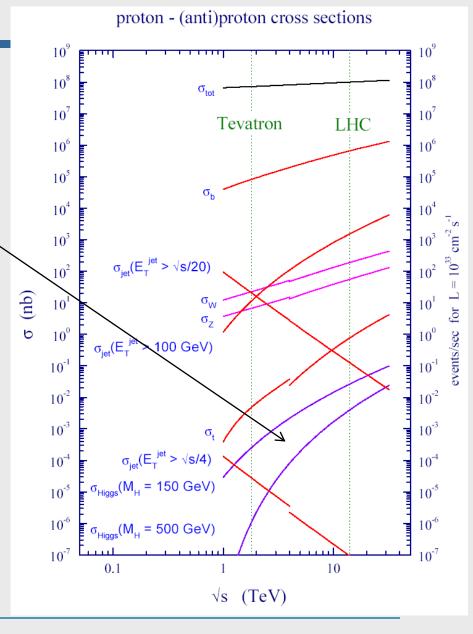
2011-2013: deciding years....

Experimental data will take the floor to drive the field to the next steps:

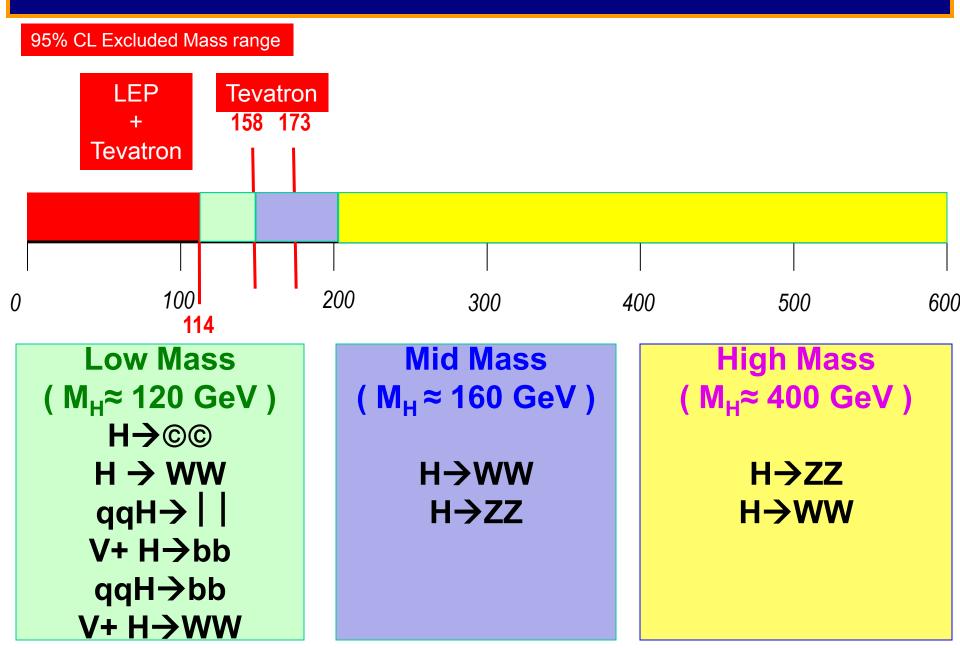
- LHC and Tevatron results
- $\blacksquare \theta_{13}$ (T2K, DChooz, etc..)
- ■Precision measurements, rare decays
- ■v masses (Cuore, Gerda, Nemo…)
- Dark Matter searches
- **-**......

Here at CERN...

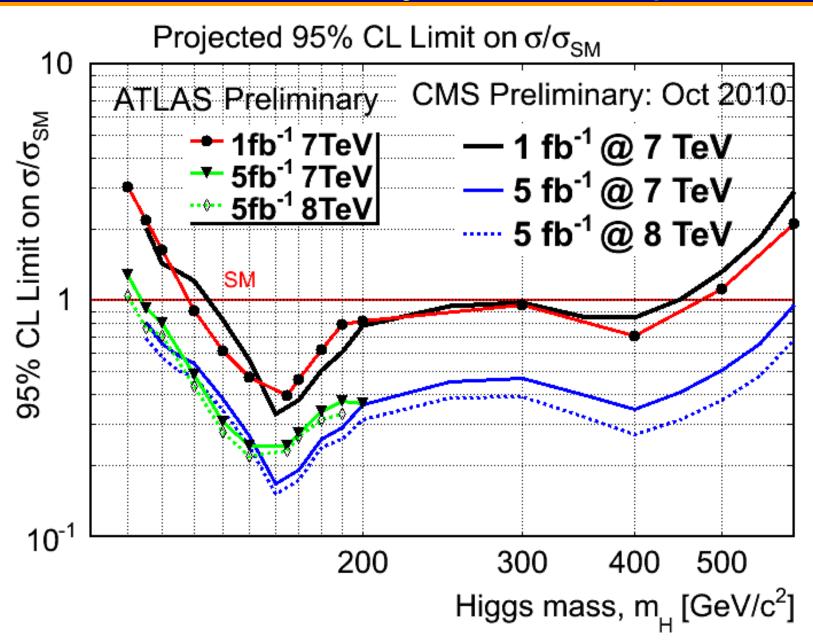

Prospects for the Higgs Boson at 7 TeV (2011-2012)



Search for the Higgs-Boson at the LHC


Production rate of the Higgs-Bosons depends on its mass

as well as its decay possibilities ("Signature (or picture)" as seen in the detector)



The Higgs Search Landscape: LHC Joins The Fray!

CMS & ATLAS Projections Compared

- Experiments well prepared to exploit
 ALL decay channels accessible
- Experiments are cross-checking each other
- Experiments are preparing to combine their results

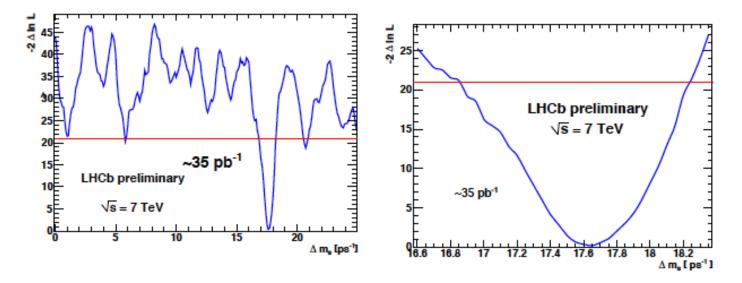
Summary of Prospects

Higgs Boson, if it exists between masses of (114 - 600 GeV) will either be discovered or ruled out in ≈ next two years

→ Decided to run in 2011 and 2012

SM Higgs Search Prospects (Mass in GeV)

ATLAS + CMS ≈ 2 x CMS	95% CL exclusion	3 σ sensitivity	5 σ sensitivity
1 fb ⁻¹	120 - 530	135 - 475	152 - 175
2 fb ⁻¹	114 - 585	120 - 545	140 - 200
5 fb ⁻¹	114 - 600	114 - 600	128 - 482
10 fb ⁻¹	114 - 600	114 - 600	117 - 535


...not only searches

 2010 LHCb results show exciting prospects for 2011-2012

Use:

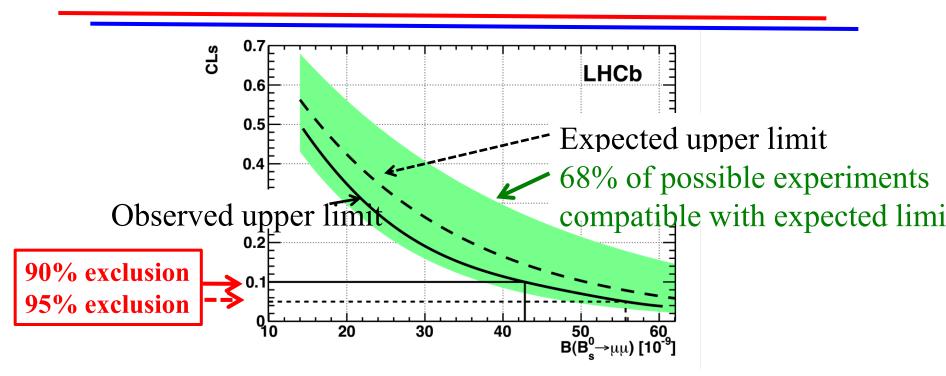
- per event proper time uncertainties, $\langle \sigma_t \rangle = 36 44 \, \mathrm{fs}$
- per event mistag rate, $\varepsilon_{\rm eff} = 3.8 \pm 2.1\%$ (OS only)

The line at 20.94 indicates the likelihood value evaluated in the limit of infinite mixing frequency

- $\Delta m_{\rm s} = 17.63 \pm 0.11 {
 m (stat)} \pm 0.04 {
 m (sys)} \, {
 m ps}^{-1}$ (4.6 σ stat. significance)
- CDF: $\Delta m_{\rm s} = 17.77 \pm 0.10 \text{ (stat)} \pm 0.07 \text{ (sys)} \text{ ps}^{-1}$

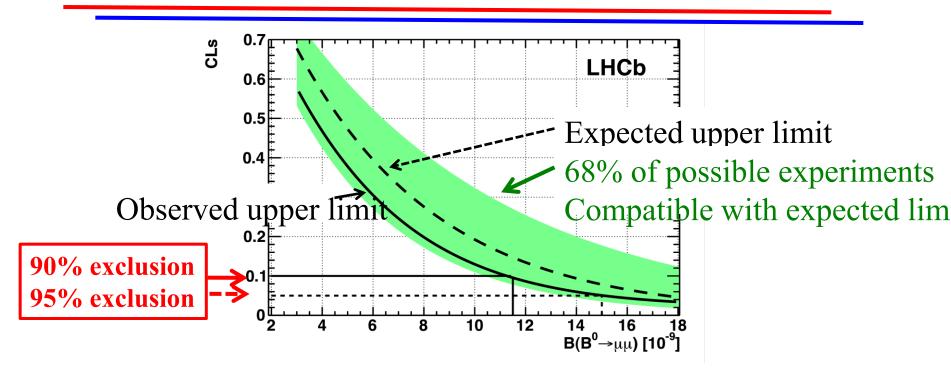
Fit the $\phi_s^{J/\psi\phi}$ phase

Expected sensitivity using toy MC [arXiv:0912.4175]:

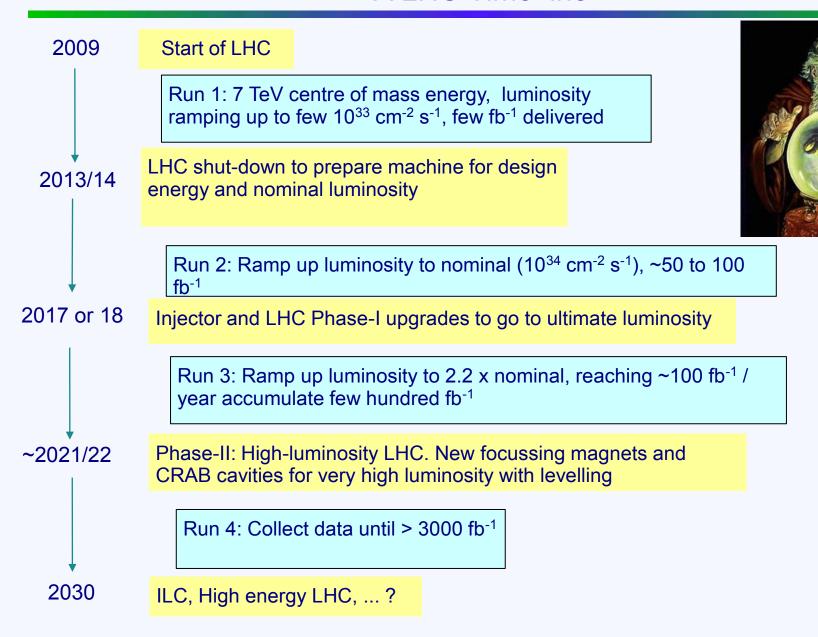

$$\sigma_{\it stat}(\phi_{\rm s}^{{
m J}/\psi\phi})\sim 0.03\,{
m rad}$$
 for 2 fb $^{-1}$ at 14 TeV $\qquad (\phi_{\rm s}^{
m SM}=-$ 0.0363 \pm 0.0017 rad)

Today performance measured on real data:

	LHCb 36 pb ⁻¹	CDF 5.2 fb ⁻¹
$\mathrm{B_s^0}\! o \mathrm{J}\!/\!\psi\phi$	960	6500
Proper time resolution	50 fs	100 fs
OS tagging power	$2.5\pm0.8\%$	$1.2\pm0.2\%$
SS tagging power	work ongoing	$3.5\pm1.4\%$


 \Rightarrow expect world best measurement of $\phi_s^{J/\psi\phi}$ very soon!

Paper submitted to Phys. Lett. B


		@ 90% CL	@ 95% CL
LHCb	Today, 37 pb -1	$< 43 \times 10^{-9}$	$< 56 \times 10^{-9}$
D0	World best, 6.1 fb⁻¹ PLB 693 539 (2010)	$< 42 \times 10^{-9}$	$< 51 \times 10^{-9}$
CDF	Preliminary, 3.7 fb⁻¹ Note 9892	$< 36 \times 10^{-9}$	$< 43 \times 10^{-9}$

Search for $B_d \rightarrow \mu\mu$

		@ 90% CL	@ 95% CL
LHCb	Today, 37 pb -1	$< 12 \times 10^{-9}$	$< 15 \times 10^{-9}$
CDF	World best, 2 fb ⁻¹ PRL 100 101802 (2008)	$< 15 \times 10^{-9}$	$< 18 \times 10^{-9}$
CDF	Preliminary, 3.7 fb ⁻¹ Note 9892	$< 7.6 \times 10^{-9}$	$< 9.1 \times 10^{-9}$

A LHC Time-line

2011-2013: busy and exciting times for HEP

To:

- Assess the implications of the emerging physics scenario for the next big thing
- Deliver the ILC TDR (and the CLIC CDR)
- Proceed towards a global vision of the HEP program, implementing new governance models and decision making mechanisms across the regions

What can you expect from CERN?

- CERN as laboratory at the energy frontier
- Active role in defining the governance of the next global project
- Preparations to bid for hosting it, but also to participate to it elsewhere

CERN Opening (Council in June 2010)

CERN has made a substantial step into globalization by:

- Geographical Enlargement/Opening
 - → full and associate membership independent of geographical location
- Participation in Global Projects
 - → coordinate broad European participation in a future global accelerator project hosted elsewhere

Recalling the agenda

Important steps in the coming years

- CDR for CLIC 2011/12
- TDR for ILC 2012
- LCWS in Granada in 2011
- ICFA Seminar at CERN 3-6 October 2011
- Update of European strategy for particle physics start: EPS 2011, finalize December 2012
- IEEE 2012 special event to promote LC

In summary

- By year 2013, **experimental results** will be dictating the agenda of the field.
- Early discoveries will greatly accelerate the case for the construction of the next facilities (Linear Collider, v-factory, HE-LHC...)
- No time to idle: a lot of work has to be done in the meantime, especially on novel accelerator techniques

In summary

We will need

- Flexibility
- Preparedness
- Visionary global policies

...and a bit of luck!

Thank you!

