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Laboratory for Intense Lasers

A unique facility with a wide range of optical, IR,VUVY, X-ray,
particle diagnostics, target zones for HHG, channels, laser-gas/
solid interactions with +10 TW laser pulses in the 100s fs range

Software infrastructure for plasma
simulations

Massively parallel PIC codes (from full PIC to hybrid) + a in-house
developed visualization infrastructure (visXD + servers + mini-
portal) + software development/versioning tools (e.g. Subversion)

osiris
w
v2.0

IRadl deverRb

Access to supercomputers

CPU hours in excess of 30 M CPU hours/year on a wide variety
of massively parallel machines, ranging from local clusters (e.g.
IST cluster) to supercomputers in Europe and in the US
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asma accelerators
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Key questions to address
» How to increase the efficiency and rep rate at high intensities?

» What are the plasma sources for + 10 GeV e- in laser wakefield?

» How to optimize the beams from plasma accelerators?
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Focus areas for activities in-plasma accelerators
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Key questions to address

» How to increase the efficiency and rep rate at high intensities?
» What are the plasma sources for + 10 GeV e- in laser wakefield?

» How to optimize the beams from plasma accelerators?
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Laboratory for Intense La

Enabling experimental workaining on asma sources, hi
intensity lasers, HHG, and diagnostics
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120 m?2 clean room

Mixed Ti:Sa glass laser system

Elaser ~ 5}
Laser puilse duration ~ 450 fs




Laser science & tech: towa

4 ultrabroadband OPCPA

=

Parametric amplification and diode pumping:
efficient, high repetition rate, high peak and
average power laser pulses

Demonstration in 2010/201 1:

X-FROG for supercontinuum 50 m) diode-pumped amplifier
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» 8-pass diod-pumped amplification in Yb:YAG

, demonstrated up to 50 mj, | Hz
» 700 nm bandwidth thr'ough Self-Phase ) For 201 I:paralell, fU”)’ diode-pumped,

modulation (using Im) ,250 fs, 1053 nm, in bulk media) regenerative+multipass 100 mJ chain for
» measuring the spectral phase: towards few-fs broadband OPCPA pumping
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Focus areas for activities in-plasma accelerators
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Key questions to address

» How to increase the efficiency and rep rate at high intensities?
» What are the plasma sources for + 10 GeV e- in laser wakefield?

» How to optimize the beams from plasma accelerators?
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Plasma sources: toward 10 GeV-electron accelerators

High quality parabolic plasma channels produced by
high voltage discharges
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» high-quality channels w/ a pre-discharge

» optimization for 3-10 cm multi-GeV accelerator
in 201 |

| I

H i Wﬂ ) iy | A \

>10 cm plasma channels for > 10 GeV

» advanced plasma ignition
scheme

& »in progress, partial demo
. in2011-12

Corrugated plasma channels

for iHHG

plasma
emission

plasma
shadowgraphy

HHG
spectrum

» periodic plasma channel modulation for high Z
plasmas for quasi-phase-matched HHG on ionic
media

» approach spectra to water window for single
shot experiments and seeding

» optimization & application in 2010-2011 (in
progress)
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Structured plasma sources—
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Gas cell Window

structured gas cells

> fast gas injection ( few ms) vs
slow gas leak

Vacuum

Vacuum

> plasma produced by discharges
between conical hollow
electrodes

Window

P internal cell structure sets initial
plasma diameter and position

Spark-gap

> geometry allows for free radial
High-power expansion of the plasma column
transmission line and formation of parabolic
channels

> low current simmer discharge
improves the plasma uniformity
and reproducibility

High-voltage
pulse generator
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structured gas cells

> fast gas injection ( few ms) vs
slow gas leak

> plasma produced by discharges
between conical hollow
electrodes

P internal cell structure sets initial
plasma diameter and position

> geometry allows for free radial
expansion of the plasma column
and formation of parabolic
channels

> low current simmer discharge
improves the plasma uniformity
and reproducibility
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2 cm long discharge
ne=5x10'"" cm3 in H,
discharge 100 kV, 800 A, 100 ns
| radial free expansion for parabolic profile
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High quality/control pla;mi :
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asma accelerators

Key questions to address

» How to increase the efficiency and rep rate at high intensities?
» What are the plasma sources for + 10 GeV e- in laser wakefield?

» How to optimize the beams from plasma accelerators?
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UCLA

osirls framework

Massivelly Parallel, Fully Relativistic
Particle-in-Cell (PIC) Code
Visualization and Data Analysis Infrastructure

Developed by the osiris.consortium
= UCLA + IST

/i
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New Features in v2.0 2
- | Bessel Beams @J

Binary Collision Module

Tunnel (ADK) and Impact lonization
Dynamic Load Balancing
PML absorbing BC

Ricardo Fonseca: ricardo.fonseca@ist.utl.pt - | Optimized higher order splines
Frank Tsung: tsung@physics.ucla.edu - | Parallel I/O (HDF5)
http://cfp.ist.utl.pt/golp/epp/ - | Boosted frame in 1/2/3D

http://exodus.physics.ucla.edu/ L. O.Silva | May 3,201 1 | CERN
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* Spatial domain decomposition
* Local field solver

* Minimal communication

* Dynamic Load Balancing
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Self-injection: >10 GeV
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S. F. Martins, et al., Nature Phys., 2010
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Boosted frame simulations for lon

g plasma sources

Self-injection: >10 GeV External-injection w/ beam loading: 40GeV

Plasma
channel
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The quest for high-quality monoenergetic proton beams
B —— UCLA

High-intensity

High-intensity b pulke =

laser pulse

Solid target
Solid target

Cold solid target Cold solid target
Linear polarization Circular polarization

Continuum spectrum High contrast ratio

Max. proton energy ~ 60 MeV Mono-energetic spectrum
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Shock acceleration can Iead thergetlc protcm beams
== = UCLA

Ar"—’/ e — —
= : : . . = 3 %

Shock
acceleration

Shock acceleration

# ions [arb. units]

S
High-intensity
laser pulse

0 500 1000 1500 2000 2500
X, [c/ wg]

Beam quality destroyed
by TNSA fields ...

Linear polarization

Strong heating

# ions [arb. units]

Monoenergetic spectrum!?

500 1000 1500 2000 2500
X [c/ ]

). Denavit, PRL 69, 3052 (1992)
L. O. Silva et al., PRL 102, 015002 (2004)



Gas jet targets allow for hlgh q/ua“ht)eshock accelerated beamsmm

Interaction at densities close
to nc is critical Requirements for high-quality shock acceleration

* High Mach number shocks in different density/temperature
plasmas’

e Shock acceleration must dominate over TNSA fields™

e  When shock is formed:™

20 C%,

Wpi Ush

Vsh = Vions = Lg >

*  When shock crosses back of target:

Reflected Vsh ( o )

. Vsh > Vions = Lg < e2Cs0 — 207
I0NS

wpz-

*  For optimal absorption (n, ~ nc), optimal thickness L; ~ 20 o

Plasma profile

CO lasers allow for the use of mm scale
gas jet targets (n¢) at high repetition rates

" G.Sorasio et al. PRL 2006
* T. Grismayer & P. Mora Phys. Plasmas 2006
" shock formation time ~ 20p wi' (D.W.Forslund & C.R. Shonk PRL 1970) L. O.Silva | May 3,201 1 | CERN



—~
@

Plasma Density (10'°cm

Abel inverted back side plasma profile 5q
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OSIRIS simulation s

2D simulations

Physical Parameters

Laser
® X =10 mm

®©lp=10'“- 10'®Wcm-2

©To=3-10ps
CO, laser lon beam ®Wo = 50 pm - o
. Plasma
gas Sy ® Box = 6000 x 400 pm?
© Ly =20 pm
® neo = 10" (nc) - 1022 cm3 (10 nc)
3 _ ® mi/me = 1836

E Numerical Parameters

® Ax = Ay = 0.5 c/wp
® Part. per cell = 16

L) ® cubic interpolation




lon density Longitudinal E-field

Electron phase-space lon phase-space

2D simulation L. O.Silva | May 3,201 1 | CERN
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Energy spreads measured to be FWHM AE/E ~1%
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Previously | MeV, rms AE/E ~ 4% had been measured (C. Palmer et al.,, PRL 2011)

f&& Neptune Laboratory
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Low beam emittance has been

—

’_’f,

4 150mm
Protons
H2 -——j
Gas let
Laser

11/30/10

Source Size : d = 120um 22MeV

Beam Size (RMS) : 6, ~5.7mm

o, ~ 2.2mm

Divergence : 6, ~37mrad o

ey ~14mrad

Emittance : g, =d'6, = 4.6mm-mrad
€, = d-ey =1.7mm-mrad 131 ce o a
el Neptune Laboratory 50mm
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Summary

© R&D in plasma based accelerators in Portugal is based at
IST, with experimental activities launched in 1991 by Tito Mendonga, in
close collaboration with EU and US partners

© Focus at IST is on PIC simulations
and plasma sources as key technologies
for plasma accelerators

© Theory and simulations grounded
on massivelly parallel simulations
(OSIRIS, QUICKPIC, JRad, dHybrid, visXD)

O Experimental activities take
advantage of Laboratory for Intense
Lasers at IST + laser team and gas
electronics expertise
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