

DYNAMIC APERTURE AND SEXTUPOLE TUNING STUDIES IN THE FCC-EE

B. Härer, M. Hofer, B. Holzer, K.Oide, D. Shatilov, T. Tydecks, F. Zimmermann

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754

Introduction

- FCC-ee targets unprecedented luminosities
 - Numerous implications on layout, among those are
 - Small β^* resulting large chromaticity generated by final focus quadrupoles
 - Top-up injection to increase integrated luminosity
 - Large energy spread due to beamstrahlung
 - Challenge is to find good chromaticity correction scheme with sufficient dynamic aperture (DA) and momentum aperture (MA) to avoid excessive particle loss

Required DA and momentum acceptance

• DA and MA requirements stem from:

FCC

- Sufficiently large DA for top-up injection
- MA to keep beam lifetime high ($\tau_{beam} > 20 \min \text{ at } t\bar{t}$)
- DA requirements from top-up injection estimated in

M. Aiba et al., Top-up injection schemes for future circular lepton collider and

K. Oide, <u>31st FCC-ee optics design meeting</u>

- For on-momentum injection, DA larger than $15 \sigma_x$
- For off-momentum injection, DA at ± 1.8 % larger than 5 σ_x
 - Assuming 5 σ_x stored beam and 5 σ_x injected beam

- MA follows large energy spread due to beamstrahlung and to keep reasonable beam lifetime
 - For lower energy modes $\delta_{acceptance} > 1.5\%$, whereas $t\bar{t}$ requires $\delta_{acceptance} > 2.5\%$ (References: <u>F. Zimmermann et al. IPAC14, MOXAA01, A. Bogomyakov et al. PRSTAB 17, 041004</u>, <u>K. Ohmi and F. Zimmermann, IPAC14, THPRI004</u>)

Chromaticity correction schemes

• Two chromaticity correction schemes in FCC-ee

- Local correction of vertical chromaticity in the IR
 - Crab sextupoles integrated in the local chromaticity correction scheme (LCCS)

- Sextupoles in arcs to correct ring chromaticity
 - Two options studied interleaved scheme and non-interleaved scheme

Local chromaticity correction in IR

- Local chromaticity scheme based on K.Oide, <u>Final focus system with odd-dispersion scheme</u> and presented in <u>K.Oide et al.</u>, <u>PRAB 19</u>, 111005 (2016)
 - Two sextupoles separated by phase advance of π
 - Inner sextupole in dispersive region to correct Q'_{y} from final focus quadrupoles
 - Strength of outer sextupole set to cancel geometric contribution, reduced to generate crab waist
 - Phase from IP to first arc sextupole subject to optimization

Arc sextupoles and constraints

- Set arc sextupoles to correct $Q'_{x,y}$ of the ring to target values while achieving sufficient DA and MA
 - Additional constraint from chromatic optics in IP (see <u>H. Sugimoto et al., IPAC2017, MOPIK076</u>) $\frac{1}{\beta_{x,y}^*} \frac{\partial \beta_{x,y}^*}{\partial \delta} = \mp \sum_i \frac{\beta_{x,y}^i D_x^i}{2\sin(2\pi Q_{x,y})} k_2^i \cos(2|\mu_{x,y}^* - \mu_{x,y}^i| - 2\pi Q_{x,y})$
 - May be extended to other elements such as collimators
- Correction schemes to follow the arc cell layout
 - Currently, FODO lattice is used due larger filling factor thus lower ΔE_{turn} , other options such as DBA studied in <u>B. Härer, Lattice design and beam optics calculations for the new large-scale</u>

electron-positron collider FCC-ee

Interleaved and non-interleaved sextupole schemes

- In the non-interleaved scheme, sextupoles of same family are separated by -*I* transform
 - No sextupoles in-between pair, resulting in lower number and requiring more strength

- In the interleaved scheme, sextupoles at every quadrupole, thus breaking cancelation
 - Allows for larger number of sextupoles, reducing required strength, but cancelation broken

1st group			2nd group			3rd group			4th group				
SI	D1 SI	D2 SI	03 SI	D1 SI	D2 SI	D3 SI	D1 SI	D2 SI	D3 SI	D1 SI	D2 SI	D3 SI	D1
													$arphi_y=60^{\circ}$
	1	2	3	4	5	6	7	8	9	10	11	12	$arphi_x=90^{\circ}$
	SF1	SF2	SF1	SF2	SF1	SF2	SF1	SF2	SF1	SF2	SF1	SF2	1
	1st g	roup	2nd g	group	3rd g	roup	4th g	group	5th g	group	6th g	group	

From B. Härer, Lattice design and beam optics calculations for the new largescale electron-positron collider FCC-ee

Studies on interleaved scheme

In the CDR phase, interleaved schemes were studied

(SEE <u>B. Härer, Lattice design and beam optics calculations</u>

for the new large-scale electron-positron collider FCC-ee and

B.Härer, 35th FCC-ee optics design meeting)

- Racetrack layout with C = 100 km and two-fold symmetry
 - Early design of the IR straight without LCCS was used
 - Chromaticity of doublet corrected by short arcs next to IR, ring chromaticity by sextupoles in long arcs
 - Up to six sextupole families studied and correction accounting for terms up to $Q_{x,y}^{(4)}$
 - MA for $t\bar{t}$ below 0.5%
 - Later studies with LCCS found MA of $\pm 1.1\%$

Studies on non-interleaved scheme

- Correction scheme in the baseline lattices is a non-interleaved scheme (see <u>FCC-ee CDR</u> and <u>K. Oide et al., PRAB 19, 111005 (2016)</u>)
 - Optimization using Downhill Simplex algorithm with the DA/MA area as figure of merit and all sextupole pairs as independent variables (keeping lattice periodicity)

Operation	No. of sextupole pairs						
mode	2-IP V18.1 layout (CDR)	4-IP V22.1 layout (FCCFS)					
Z (45.6 GeV)	208	75					
<i>tī</i> (182.5 GeV)	294	146					

- Target DA and MA were achieved or exceeded with this scheme
 - Goals met so far only without errors/corrections included
 - Significant loss of DA when errors are included (see e.g. <u>T. Charles and L. van Riesen-Haupt</u>, <u>135th FCC-ee optics design meeting</u>, <u>K. Oide, FCCIS WP2 Workshop 2021</u>, <u>T. Tydecks, FCC-week 2018</u>), how much can be restored by reoptimization of sextupoles remains to be studied
 - Necessity of large number of independent sextupole pairs to be investigated

Further optimization using PSO

- Use of genetic algorithms to optimize DA is established practice in light source community (see <u>1,2,3,4,5,6,7,8,9</u>)
 - Particle swarm optimization (<u>PSO</u>) to improve DA has been studied in the FCC-ee (see <u>T. Tydecks, 78th FCC-ee Optics Design Meeting</u>, <u>FCC-ee CDR</u>, and <u>example code</u>)
 - Initialization of a population of given size, evaluate objective function, and update individual particle based on global best solution and past best solution of individual
 - Shown promising improvements, MA area increased by 18%

Ongoing studies

FCC

- Reference implementation for sextupole tuning only available in SAD
 - Currently trying to port it for use with other codes and algorithms (Downhill simplex, PSO, NSGA-II,..)
 - A first prototype is developed <u>here</u>
 - Second to that, flexible definition of sextupole circuits
 - First study done for V22.1 $t\bar{t}$ -lattice, reducing the number of circuits by a factor 2
 - Pair two focusing pairs to one circuit, and similar for defocussing
 - Further tweaking of Penalty function, weighting etc. required

DA using all sextupole knobs

DA with reduced number of circuits

Outlook

- Size and performance requirements make FCC-ee a challenging machine in terms of DA
 - Sufficient DA for top-up injection and large MA to keep particle after emission of beamstrahlung photons
 - Secondary constraints from chromatic optics in the IP
 - Different chromaticity correction schemes studied in the past
 - Non-interleaved correction scheme with LCCS in IRs meets DA requirements and is used in the baseline lattices
 - Open questions:
 - Maximum achievable DA and MA in presence of errors
 - Required number of sextupole knobs and tuning time/complexity in operation

Thanks for your attention!