

Measurement Techniques

J. Keintzel On behalf of the FCC-ee Optics Tuning Team

FCC Tuning Workshop 2022 11th May 2022

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Motivation

- FCC-ee designed with 4 IPs (\mathbf{X})
- 4 different energies
 - Z: 45.6 GeV, 1 RF
 - W: 1 RF
 - H: 1 RF
 - ttbar: 2 RFs
- Demands precise optics control
- \rightarrow Optics measurements and corrections
- \rightarrow Evaluation of best suitable techniques
- → A lot to be learned from existing facilities such as SuperKEKB, etc.

SuperKEKB

Beam Position Monitors I

- Crucial devices which record the centroid orbit data of a particle bunch
- Pick-ups most common type, electrode locations different, e.g:

Beam Position Monitors II

- Resolution also depends on number of bunches and bunch populations
- Improves for
 - Using average over several turns compared to Turn-by-Turn measurements
 - Higher bunch current
 - More bunches
- Other imperfections affect signal
 - Non-linearity, calibration, etc.
- Typically installed next to quadrupoles

Assuming a BPM next to every quadrupole would require about 1800 BPMs Single bunch measurements for SuperKEKB positron ring with 4 GeV

JACQUELINE KEINTZEL

MEASUREMENT TECHNIQUES

K-Modulation

- Successfully performed in SuperKEKB, LHC, ...
- Used to determine β^* by varying quadrupole strength
- β -function at quadrupoles estimated by tune change

 $\Delta KL \dots$ relative change of integrated quadrupole strength $\Delta Q \dots$ relative change of tune

$$\overline{\beta} \approx \pm \frac{4\pi\Delta Q}{\Delta KL}$$

Minimum β -function not always at IP but shifted by waist w

• β_w propagated from β_0 at the final focus quadrupoles and β^* given by $\beta^* = \beta_w$

L* ... distance from IP to first quadrupole

$$\beta_0 = \beta_w + \frac{(L^* \pm w)^2}{\beta_w}$$

• Main limitation is tune accuracy measurement

P. Thrane et al., Phys. Rev. Accel. Beams 23, p. 012803, 2020. P. Thrane et al., CLIC-Note-1077, 2017.

Closed Orbit Distortion

- SuperKEKB 3 pairs of orbit correctors generate redundant set of 6 closed orbit distortions
- Average orbit over several turns
- Large matrix generated
- Optics retrieved by analytical equations
- Rather time consuming (20 mins in SuperKEKB)
- Impact of radiation damping in FCC-ee needs to be evaluated

Y. Ohnishi et al., IPAC'16, THPOR007, 2016.

Single Kicks for TbT Z-Mode

- Orbit recorded in every turn
- Beam excited
- Orbit damps after single kick
- Equal H and V damping

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD after 6 sigma kick Damping time about 2300 turns, 40 MeV radiation losses per turn

 \rightarrow Slow enough to be used for optics measurements

Single Kicks for TbT ttbar-Mode

- Orbit recorded in every turn
- Beam excited
- Orbit damps after single kick
- Equal H and V damping

FCC-ttbar mode with 182.5 GeV beam energy Single particle tracking in SAD after 6 sigma kick Damping time about 40 turns, 10 GeV radiation losses per turn

→ Too fast to be used for optics measurements

Continous Excitation

- Orbit recorded in every turn
- Beam excited continously

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD without radiation damping

• Transverse feedback and amplification \rightarrow Driving on the natural tune

Continous Excitation

- Orbit recorded in every turn
- Beam excited continously

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in MAD-X **without radiation damping**

CIRCULA

11

- Transverse feedback and amplification \rightarrow Driving on the natural tune
- AC-Dipole \rightarrow can also drive at tune different from the natural one
- Radiation damping remains to be included

Harmonics Analysis

- Fourier Transformation including cleaning based on SVD performed
- \rightarrow Yields tunes, phases between BPMs, amplitudes, noise estimates, ...
- Optics then measured using harmonics analysis output

Phase Error

- Relative rms phase advance error figure-of-merit for measurement quality
- Error increases with BPM noise

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD

- 500 turns, only 350 BPMs, 1 seed \rightarrow to be improved in future studies
- Kick amplitude 6 σ_x , σ_y
- Effect of radiation damping negligble
- BPM noise 20 times larger for vertical plane

Phase Error - No Damping

- Relative rms phase advance error figure-of-merit for measurement quality
- 500 turns, only 350 BPMs, 1 seed \rightarrow to be improved in future studies
- Various kick amplitudes
- Without noise: Smaller kick lower error
- With noise: Optimum kick strengths
 - 20 μm: 6 σ_x, σ_y

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD **No radiation damping**

Phase Error - No Damping

- Relative rms phase advance error figure-of-merit for measurement quality
- 500 turns, only 350 BPMs, 1 seed \rightarrow to be improved in future studies
- Various kick amplitudes
- Without noise: Smaller kick lower error
- With noise: Optimum kick strengths
 - 20 μm: 6 σ_x, σ_y
 - 100 μm: 12 σ_x, σ_v

Amplitude must be large enough to compensate for BPM noise

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD **No radiation damping**

Phase Error - Damping

- Including synchrotron radiation damping
 - 20 μm: 6-8 σ_x, σ_v

FCC-Z mode with 45.6 GeV beam energy Single particle tracking in SAD **With radiation damping**

• 100 μm: 6-8 σ_x, σ_v

The optimum kick strength changes if single kicks and damping or constant amplitude is used for optics measurements

Single Kicks in SuperKEKB

- In addition to radiation damping orbit affected by decoherence, head-tail, etc.
- Method to measure decoherence from one single TbT file with damping developed
- Applicable for FCC-ee
- Understanding SuperKEKB essential

TbT single bunch orbit SuperKEKB positron ring

FCC-Z mode amplitude detuning

CIRCULA

COLLIDER

17

Summary and Outlook

- First promising studies for TbT measurements in FCC-ee
- Strong synchrotron radiation damping influences measurement techniques
- Lessons to be learned from existing machines such as SuperKEKB
- Future studies:
 - AC-dipole with synchrotron radiation for particle tracking
 - Use AC-dipole tracking data with compensation techniques for optics measurements
 - Run more seeds and more BPMs for more realistic estimates on accuracy
 - See impact of field and misalignment errors on measurement techniques
 - Combine measurement techniques with tuning algorithms

.....

Thank you!

Measurement Techniques

J. Keintzel On behalf of the FCC-ee Optics Tuning Team

FCC Tuning Workshop 2022 11th May 2022

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Transverse Feedback System

