PETRAIV. NEW DIMENSIONS

PETRA IV: alignment, stability, and optics correction

Ilya Agapov, DESY

Geneva, May 11th, 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754

Campus Bahrenfeld Accelerator-based photon sources

X-Ray Free-Electron Laser fs dynamics of complex matter on the atomic scale

PETRA III Ada Yonath Hall

> Centre for Structural Systems Biology

HARBOR

CHyN

PETRA III

MPI-SD

Synchrotron Radiation of Highest Brightness atomic structure of complex matter

Cooperation partners UHH · MPG · EMBL · HZG CSSB partner institutes Sweden · India · Russia

PETRA III Paul Peter Ewald Hall

FLASH VUV & Soft X-ray Free-Electron Laser fs dynamics of complex matter (spectroscopy)

PETRA IV.

X-Ray Microscope for Chemical, Biological, and Physical Processes

Cross-scale view of structure and function of complex systems in nature and technology:

- > zoom to relevant scales
- > use X-ray analytical contrasts
- > time-resolved

- > contributions to grand challenges
- > all fields of science
- > academia and industry

PETRA IV unprecedented beam parameters enable a diverse experimental portfolio

$$\mathcal{B} \propto \frac{F}{4\pi^2 \Sigma_x \Sigma_{x'} \Sigma_y \Sigma_{y'}} \qquad \Sigma_{x,y}^2 = \sigma_{x,y}^2 + \sigma_R^2 \qquad \Sigma_{x',y'}^2 = \sigma_{x',y'}^2 + \sigma_{R'}^2$$

Parameter	Brightness mode	Timing mode
total current (mA)	200	80
bunch current I_b (mA)	0.125	1.0
arc ID $\beta_x/\beta_y(m)$	3.6/2.2	3.6/2.2
flagship ID $\beta_x/\beta_y(m)$	4.0/4.0	4.0/4.0
hor. emittance ϵ_x (pm rad)	14.2	22.9
vert. emittance ϵ_y (pm rad)	2.84	4.60
bunch length σ_{z} (mm)	13.58	19.96
bunch length σ_t (ps)	45.7	64.3
energy spread $\sigma_p~(10^{-3})$	0.988	1.436
Touschek lifetime $ au$ (h)	8.5	2.1

Institutions vs. Scientific Fields (SIP constributions)

100%

90%

80%

70% 60%

50%

40%

30% 20%

10% 0% Life and Health
Earth and Environment
Energy
Transport and Technology
Information Technology

CMBL

Kai Bagschik, Karo Baev, Stephan Klumpp, Christian Schroer, Oliver Seeck, Markus Tischer, HC Wille

Technical design is transitioning into implementation

Harald Reichert, Riccardo Bartolini

Harald Reichert was Director for Research in Physical Sciences at ESRF from 2009 until the end of last year. He will now **support the PETRA IV Team in the creation of the TDR** which builds on the Conceptual Design Report (CDR).

1010 stee

Vacoflux

Civil Construction - Summary

PETRA IV Lattice is based on six-bend achromat arcs

 $\beta_{x,y}(m)$

520

580

600 620 640

- Changed to H6BA in 2021
- Lattice frozen in April 2022

Unit cell with 43 pm emittance. 2x damping with wigglers

Machine stability is challenging

MBA lattices are sensitive to errors

Static errors (alignment errors, multipole errors, long-term tunnel drifts):

- Amplitude in 10s of µm range
- Response to errors nonlinear, up to unstable beam
- Machine bootstrapping required

Dynamic errors (mechanical vibrations, electric noise).

- Smaller amplitude
- Linear behaviour
- No conceptual difference to PETRA III
- But better precision required in PIV due to smaller beams and higher degree of coherence

Noisy urban environment, legacy infrastructure

Sensitivity analysis was driving lattice development

- At the early design stages lattice changes happen too often to set up and perform bootstrapping simulations
- Frequency maps give good prediction on DA/LMA with errors
- We use proxy characteristics, such as
 - Probability of closed orbit existence vs. alignment error
 - Closed orbits and vs alignment error
 - Beta beat vs. closed orbit
 - DA and LMA vs. beta beat
- MOGA and several other simulations use simplified error and correction model (smaller errors + only orbit and tune correction). This agrees well with the full bootstrapping simulations

Machine bootstrapping procedure set up and tolerances specified

• Magnet Errors:

- Magnet offsets = 30 µm
- Magnet roll = 200 µrad
- Magnet calibration = 1.10⁻³
- Quadrupole calibration = $5 \cdot 10^{-4}$
- Girder Errors:
 - Girder offsets = 100 µm
 - Girder rolls = 200 µrad

BPM Errors:

- BPM offsets = 500 µm (30 µm after BBA)
- BPM roll = 400 μ rad
- BPM calibration = 2%
- BPM nose (TBT) = 20 µm
- BPM noise (CO) = 0.1 μm
- CM Errors:
 - CM roll = 200 µrad
 - CM calibration = 2%

- Simplified correction:
 - First turn threading
 - Sextupole/octupole ramp
 - Orbit and tune correction
 - Reduced LOCO

Machine performance parameters reached in simulation

- DA guarantees 100% theoretical injection efficiency with errors
- LMA guarantees theoretical lifetime with errors of > 5 h
- Next steps: optimization of the start-up procedure, implementation of production-level software,

Experimental work on alternative optics correction schemes

Lukas Malina

- Standard optics correction at PETRA III based on response matrix https://www.desy.de/xfel-beam/data/talks/talks/keil_-_response_measure_20051212.pdf
- Optics measurements from driven oscillations implemented
- Beta beating, dispersion and RDTs measures
- Putting in operation: facing issues with BPM synchronization, and BPM server overloads

1000

Location [m]

500

2000

Measures for static correction being taken

- Several places in the tunnel exhibit strong movements (cracks)
- The cracks are monitored
- Temperature stabilization in the tunnel could not fully eliminate the floor movements
- Evaluated possibilities of tunnel reinforcement, deemed inefficient
- Movable girders and feed-forwards are foreseen
- Heat dissipation in tunnel will be minimized to provide best temperature stability
- Cracks accounted for in CAD model and in beam dynamics calculations

Michael Bieler, Jens Klute, Michaela Schaumann

Long term Movements

Epoxy fixation of tunnel cracks: minor stability improvement seen

SWR long term longitudinal motion 2021/2

→ SWR long term transverse motion 2020/21

SWL long term longitudinal motion 2020/21

Michael Bieler

Alignment and logistics concepts being consolidated

Boundary conditions have been constantly changing

Logistics plan converged

- 30 µm alignment tolerance relatively easily achievable "in the lab", under assumption'
 - Sufficient space
 - Constant temperature
 - Reduced transport
- Alignment requirements and the logistics plan strongly coupled

25 45 50 55 60 80 10 15 20 30 35 40 65 70 75 85 90 6.) 566 m^2 3.) 140 1.) 394 m^2 5 2.) 100 7.) 4.) (10*14) 14. (Front Ends, 80 10*10 (24.6*16) 271m^2 10 5* Assemb. & Prepar.) (Diag.) **Rack-Ass** Clean-Room m^2 Pre-Cl 10 (24.6 * 23) plus (24.6 15 *11) Ventilation 5.) 372 m^2 (31*12) 20 on top (Pre-Test +Assembling) 25 0 30 8.) 360 m^2 9.) 450 m^2 10.) 50 12.) 224 m^2 (34*6.6) 35 m^2 Girder Storage (21 Girders) Truck (20*22.5) (16*22.6)Girder Storage I Alignment & 11.) 144 13.) 544 m^2 (34*16) 40 m^2 (72 Girders) Acclimat. **Assembling Lines** (9*16) 45 Power & Cooling 50 55 88.0 m 60

Dieter Einfeld, Markus Hüning

Transport tests being performed

- Tests with PETRA III girder performed
- Will be redone with PETRA IV mock-up girder

Point #	Deformation X / µm	Deformation Y / µm	Deformation Ζ / μm
PQK36_AUS	4	-5	9
PQK36_EIN	1	7	-11
PQK36_MITTE	2	1	-1
PQK36_OBEN	12	6	-3
PQK62_AUS	10	5	-6
PQK62_EIN	7	7	6
PQK62_MITTE	8	6	0
PQK62_OBEN	2	4	-1
PQL6_AUS	-9	-6	-1
PQL6_EIN	-12	-9	11
PQL6_MITTE	-11	-7	5
PQL6_OBEN	-16	-10	4

Table 1 Laser Tracker specifications

Measurement	Standard deviation
Hz angle	0.15 mgon
V angle	0.15 mgon
IFM distance	0.4 μm + 0.15 ppm
ADM distance	0.010 mm
Distance combined	10.4 µm + 0.15 ppm

Epoch number	Date	Test before epoch
-1	1.9.2021	-
0	20.9.2021	None
1	22.9.2021	Craning
2	29.9.2021	Truck

Alignment procedure worked out for 30 µm precision after transport

- Alignment in tunnel only possible with 100 µm precision
- Combining alignment with magnetic measurements in a temp. controlled environment

Barker, Prenting, Schloesser

Vibrations: large orbit amplification factors

PETRA IV FOFB: necessary corrector strength depends on ambient noise

Revisiting the FOFB scheme based on corrector design

More detailed FOFB simulations and design underway

Communication blocks are shared/distributed. Disturbance models by girder movements. Local disturbances not added here.

Girder Design is optimized for stability

- R&D on topologically optimized girder performed during the CDR phase
- Mode analysis on preliminary design of a topologically optimized girder performed, sub-10 nm amplitude due to ground motion
- Traditional welded design also in place

Prize for her work within the collaborative project on the influence of bio-inspired structures on the vibrational properties and the development of the **girder structure for PETRA IV**.

	Simulation	Measurement
f_1	119.6 Hz	116.6 Hz
f_2	189.8 Hz	199.7 Hz
f_3	236.8 Hz	238.7 Hz
f_4	257.1 Hz	250.2 Hz
f_5	290.4 Hz	292.5 Hz

Normann Koldrack, Simone Andresen

Optical Fiber network being set up for vibration monitoring

XFEL tunnel length (m)

Hoffmann, Meyners, Schlarb

http://wave-hamburg.eu

Workshop on May 13 2022 <u>https://indico.desy.de/event/34125/</u>

Conclusion and outlook

- Lattice design for PETRA IV in place, engineering integration ongoing and TDR nearing completion
- Commissioning simulations demonstrate feasibility of machine operation given a number of stability challenges
- Alignment, logistics and operation concept in place for stab le machine operation