

ESRF Alignment Techniques and Results

D. Martin on behalf of the ESRF Survey and Alignment Group

There were two key constraints for EBS

First respect the magnet (and other) alignment tolerances

Machine	Δx [µm]	Δy [µm]	Δz [µm]
Long. Varying field dipoles	1000	>100	>100
High gradient quadrupoles, Combined function dipoles	500	60	60
Medium gradient quads	500	100	85
Sextupoles	500	70	50
Octupoles	500	100	100

Maximum permissible error 2.5 or

... and second ensure the new machine was in the same place as the old machine to minimize disturbance to the functioning beamlines.

FIDUCIALISATION

For a magnet, we are interested in putting the magnet axis in the right place

But we cannot see the magnet axis

So we have to reference it with respect to external references that we can see.

Page 3 FCC-ee Optics, Tuning and Alignment mini-workshop, CERN 11-12 May 2022, D Martin ESRF

ESRF FIDUCIALISATION

The original plan was for the magnet manufacturers to do the fiducialisation and shimming, but it was discovered that there were unacceptably large differences between measurements made at the ESRF^{*} and by the manufacturers ...

So the ESRF Survey and Alignment group were asked to fiducialise all of the magnets ...

At the ESRF this is done on a magnet measuring bench using a stretched wire.

*The problem was with the manufacturers 3D measuring arm instruments...

FIDUCIALISATION UNCERTAINTY

		Ux [µm]	Uy [µm]	Uz [µm]
Laser Tracker				
	Wire position	13	15	18
	Measurement	9	10	9
	Repeatability	3	3	12
Magnet measurements*			4	4
Ma	gnetic Fiducialisation*		19	24
Magnet Shim Determination				24
Tot	al		19	34

* G. Le Bec ESRF

We combine all of these errors/uncertainties to determine the fiducialisation uncertainty contribution.

This is the first of several contributions to the overall alignment uncertainty...

VACUUM CHAMBERS

BPM FIDUCIALISATION

GIRDER ASSEMBLY

Assembly was made at ESRF01 – a dedicated building

SUMMARY OF HIGH TOLERANCE MAGNET ESRF01 ASSEMBLY ERRORS

Summary statistics for the assembly of the Octupole, Quadrupole, Sextupole and DQ magnets on the girders at ESRF 01...

GIRDER ALIGNMENT UNCERTAINTY

/IN - Unified Spatial Metrolo	gy Network									- 0	>	<
Weight Instrument (check if r	novinal	Weight	Point	Ма	Ba	Ux	Uv	Uz	Umag	Meas	1	~
1,000, 0: Só ó::0 , Leice em	Scon AT403	1000	DI 28 3 F	0.032	121%	0.007	0.008	0.008	0.013	01 345		
☐ 1.000 0.000 ACC Leica en Z 1.000 1: Sô B:0 Leica en	Scon AT403	1.000	DEED_S_C	0.002	104%	300.0	0.007	0.007	0.012	01_3456		
Z 1.000 - 2:Să C:0 - Leica em	Scon AT403	2 1 000	OFER FL	0.020	101%	300.0	0.007	0.007	0.012	01_3456		
Z 1.000 2:54 0:0 Leica en	Scon AT403	2 1 000	DI 2B 2 F	0.020	98%	0.000	0.000	0.009	0.014	01 345		
☐ 1.000 d: SA E::0 - Leica em	Scon AT403	2 1 000	DL2B_3_S	0.027	95%	0.000	0.000	0.008	0.013	01_345		
☐ 1.000 % GALE::0 Leica em	Scon AT403	2 1 000	SD1B_EL	0.021	95%	0.000	0.000	0.009	0.015	01 345		
☐ 1.000 G: SA G::0 - Leica en	Scon 4T403	2 1 000	DI 2B 4 F	0.0024	93%	0.007	0.008	0.008	0.013	01 345		
		2 1 000	OE8B_SL	0.021	89%	0.007	0.009	0.008	0.014	01 3456		
Instrument Solution Reference F	rame	2 1 000	SD1B_SE	0.027	88%	0.008	0.009	0.008	0.015	01 345		
Instrument Frame	Working Frame	2 1 000	OF88 FF	0.031	88%	0.008	0.009	0.007	0.014	01 3456		
		2 1 000	CH6-BPM04-P2	0.023	87%	0.009	0.011	0.010	0.018	45		
Auto Solve, Trim Outliers, and F	le-Solve	1 1 000	DI 2B 1 F	0.025	85%	0.009	0.009	0.009	0.016	1 345		
Auto Solve	o this automatically	1 000	DL2B_1_S	0.029	85%	0.008	0.009	0.009	0.015	0 345		
		1.000	DL2B 5 E	0.027	81%	0.007	0.007	0.007	0.013	01 345		
Best-Fit Only	Instrument Settings	1.000	DL2B 4 S	0.021	81%	0.007	0.007	0.007	0.012	01 345		
Best-Fit then Solve	Trim Outliers	1.000	DQ1B_SE	0.020	78%	0.009	0.011	0.009	0.016	3456		
		1.000	DQ1B EE	0.020	75%	0.007	0.009	0.008	0.014	0 345		
Solve	Exclude Measurements	1.000	G128-SI08	0.020	72%	0.008	0.009	0.009	0.016	3456		
Uncertainty Field Analysis		1.000	QF6B_SE	0.017	72%	0.006	0.007	0.007	0.012	01_3456		
Begin Sample	es: 300	1.000	QD5B_SI	0.023	71%	0.008	0.009	0.008	0.014	01_345_		
		1.000	G128-SE07	0.022	70%	0.010	0.010	0.011	0.018	012		
✓ Time Lin	nit: 4.0 min.	1.000	QF8B_SE	0.022	69%	0.008	0.009	0.008	0.014	01_3456		
Reporting	-	1.000	QF8B_EI	0.020	68%	0.008	0.009	0.007	0.014	01_3456		
m m 🖘	Error	1.000	QF6B_EE	0.018	67%	0.007	0.007	0.007	0.012	01_3456		
E 🐔 🚰	 Uncertainty 	1.000	QD5B_EI	0.016	65%	0.008	0.009	0.008	0.014	01_345_		
Instrument I Incertaintu Analu	sis CoVar	1.000	SD1B_SI	0.021	65%	0.009	0.009	0.009	0.016	01_345_		
monument encontainty relay	ora	1.000	QD5B_SE	0.014	65%	0.008	0.009	0.009	0.015	01_345_		1
Apply Results												Ē
Create composite group:	USMN Composite	No scale bi	ars defined.							Scale	Bars	
	1.11.6.11	Summary										
Ureate point und	certainty rields	Point Error: Overall RMS = 0.009, Average = 0.007, Max = 0.032 'SD1B_EI'										
Update compos	ite puint unsets	System S	olution Time: 0.3 s	ec, Rol	bustness	Factor = 0.00	2318, Unkr	nowns 24, E	quations 7	62		
Apply instrument and point g	group transforms in SA	Uncertair	nty Magnitude: Av	erage =	0.016, M	ax = 0.023 °C	H5-1'					
Ue-Activate measurements	weighted to zero	68.26% 0	Confidence Interva	I (1.0 sia	maì. San	ples: 300. W	CF: GNet::G	ref				
Apply	Cancel	Uncertair	ntv Analysis Time:	39.8 sec								

	Ux [µm]	Uy [µm]	Uz [µm]
Measurements	6	7	6
Difference to nominal	126	24	25
Overall uncertainty		16	17
Total	126	30	31

The European Synchrotron

STORAGE AND TRANSPORT

Storage place	Quantity	Comments
G.L.D.	90	Girder direct access with a crane
ESRF 01	9	End of the assembly process
Chartreuse hall	30	Non standard girders + ID24 entry point

Source: Mini-Workshop on Girders and Alignment – 10-11 May 2021- Thierry Brochard (ESRF)

INSTALLATION

Girders were:

- transported from storage on a truck,
- unloaded using a crane,
- transported to a gantry,
- lifted into the tunnel using the gantry, and
- transported to their final position with the transport module.

EFFECT OF STORAGE, TRANSPORTATION, INSTALLATION AND BAKEOUT

After the installation and initial alignment in the tunnel all of the girders were remeasured like they were during in ESRF01. This was done again after the bakeout was finished in the tunnel.

The magnet positions were then adjusted onto the magnet positions measured at ESRF01.

Survey	Uy [µm]	Uz [µm]
ESRF01 (see previous slide)	16	17
After transport (3D adjustment on ESRF01)	17	20
After bakeout (3D adjustment on ESRF01)	19	21

These results suggest the effect of transport was $\sim 10 \ \mu m$ – and the effect of bakeout on the alignment less than that ...

The European Synchrotron

NOVEMBER 2019 – AFTER FINAL ALIGNMENT - ERROR

Page 15 FCC-ee Optics, Tuning and Alignment mini-workshop, CERN 11-12 May 2022, D Martin ESRF

NOVEMBER 2019 – AFTER FINAL ALIGNMENT - RESIDUALS

28 NOVEMBER 2019 AT 19hrs FIRST TURNS IN EBS-SR

BEAMLINES

Recall the second major constraint – put the machine back where the old machine was...

[mm]	[mm]	[urad]
0.32	0.22	8

IMAGE OF PHOTON BEAM ON ID09 JANUARY 30 2020

Old SR 26 November 2018

EBS 30 January 2020

...The EBS X-ray beam at distances varying from 45 to 160m was found within fractions of millimetres from its position in December 2018...

E-mail Francesco Sette to all staff on 31/01/2020

MARCH 2022 – 28 MONTHS AFTER FINAL ALIGNMENT

srMar22 dR Position (St Dev = 0.063 mm)

U_R = 63 um *was 53 um in 11/2019* U₇ = 62 um *was 30 um in 11/2019*

srMar22 dZ Position (St Dev = 0.062 mm)

TEMPORAL AND SPATIAL DEFORMATION - GENERAL SITE MOVEMENTS

Every site is different, has different site movement signatures and evolves differently.

Recall smoothing:

```
U<sub>R</sub> = 63 um was 53 um in 11/2019
U<sub>z</sub> = 62 um was 30 um in 11/2019
```


Generally magnets are installed on supports (girders) that are themselves installed on a concrete floor ...

Concrete floors are subject to thermally induced movements – temperature variations over the day and year

A number of experiments have been made at the ESRF to study this ...

Bending movements vary between 0 and 700 µm over 6 months depending on time and position

1hr	2hrs	4hrs	8hrs	12hrs	24hrs	48hrs	1wk	2wks	4wks	2mo	4mo	6mo
	1	2	3 6	6 9	13	19	43	74	138	270	470	655
	1	1	3 5	5 7	10	15	34	59	110	217	374	521
	0	1	2 4	5	7	11	24	42	77	155	266	365
	0	1	1 2	2 3	4	6	12	21	40	79	137	187
	0	0	0 1	1	1	2	5	8	15	30	54	70
	0	0	0 0) 0	0	0	-1	-2	-2	-3	-3	-7
	0	0	0 0	0 0	-1	-1	-2	-3	-6	-10	-17	-24
	0	0	0 0	0 0	0	0	1	1	2	2	2	5

Again every site and floor is different, but the principle is the same...

Page 24 FCC-ee Optics, Tuning and Alignment mini-workshop, CERN 11-12 May 2022, D Martin ESRF

Recently experiments were made at the ESRF to create a closed vertical ID angle bump using girder movements.

The experiment worked well and it was shown that ID bumps using the girders are both feasible and achievable

However, during the experiment, we found there were coupled parasitic horizontal movements. These movements were observed both in the beam and with capacitive captors installed to measure them.

There were both one-off and repeatable movements.

It is important to note that the girders were tested before installation and parasitic coupled movements were not observed in unconstrained girders.

It is postulated these movements are constraints introduced into the rigidly fixed girder as a result of small movements of the floor similar to those measured in the previous slides.

We would like to do more tests to see if this is a reasonable mechanism to explain what we have observed.

Girder Movements with Beam, MDT Review, Lee Carver, David Martin, Gilles Gatta, Thierry Brochard, Simon White

