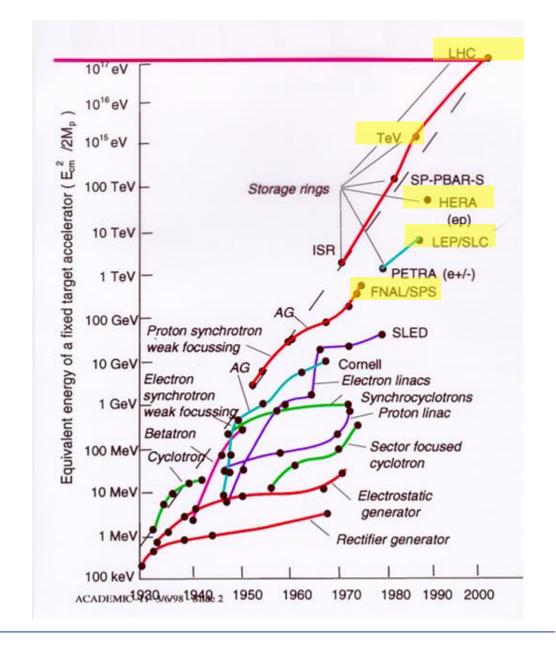


Workshop on opportunities for Finnish Industry at CERN

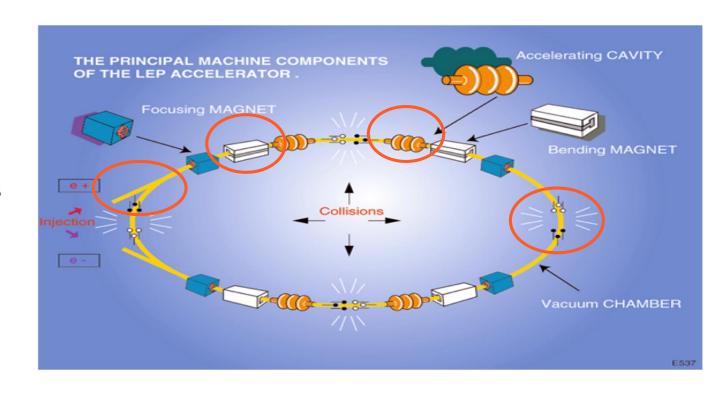
- Radio Frequency Systems-

O. Brunner, SY-RF


Content

- Introduction to accelerators
- Role of radio-frequency (RF) systems in accelerators?
- Components of a typical RF system
- Technologies, challenges and perspectives
- Summary

The history of accelerators


- Exponential development for almost 100 years
- In many cases accelerator needs have been the driving force behind new technologies
- Superconductivity, key technology of highenergy machines since the 1980s
- Accelerators are energy intensive: <u>efficiency</u> is a must to all future accelerator projects

What is a Particle Accelerator?

- Provides a beam of energetic particles to study the structure of matter
- Employs a vacuum chamber in which the particles travel
- Employs magnetic fields to steer and focus the beam
- Employs electric fields to accelerate the particles radio-frequency
- Makes collisions either against a fixed target, or between two beams of particles

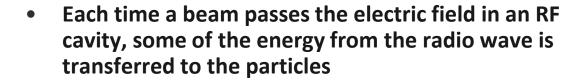
Technologies needed for building and exploiting accelerators

- Civil engineering
- Survey, Geodesy
- Electrical distribution
- Cooling and Ventilation
- Cryogenics
- Magnets, room temperature and superconducting
- Power converters
- Ultra High Vacuum
- Radio Frequency, room temperature and superconducting
- Beam Diagnostics and Instrumentation

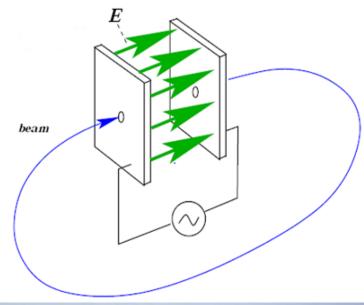
- Controls and Databases
- Beam feedback
- Injection, extraction... fast powerful kicker magnets
- Targets, dumps and collimators
- Electronics
- Large scale simulations
- Mechanical engineering
- Beam-materials science
- ...

Particles accelerators around the world

- There are more than 30,000 accelerators in operation around the world (1)
- Multi-talented machines¹⁾:
 - particle physics research: "Particle accelerators are the closest things we have to time machines", Stephen Hawking
 - creating tumour-destroying beams
 - killing bacteria, sterilizing medical devices
 - developing better materials
 - helping scientists improve technologies (e.g. fuel injection systems)

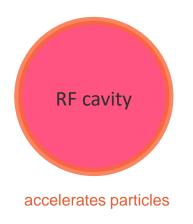


Research accelerators is the place where the technology for all other accelerators is developed

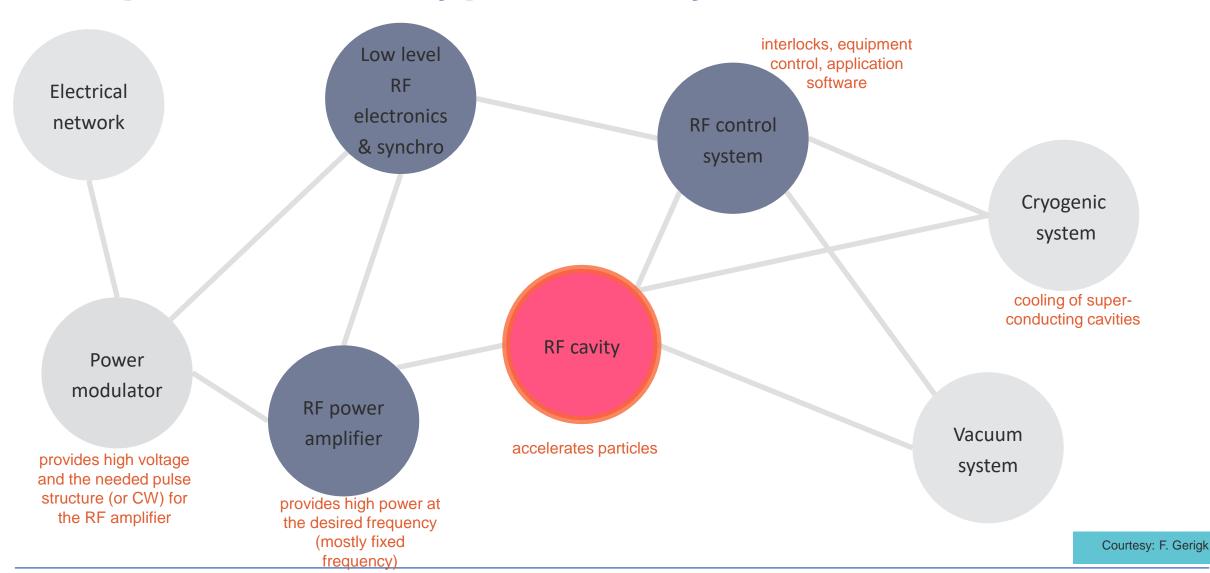


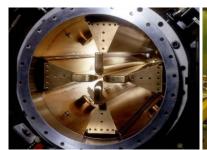
Why radio-frequency?

- Particle accelerators use <u>electric fields</u> to speed up and increase the energy of a beam of particles
- Electromagnetic resonators (RF cavities) allow to reach very high accelerating gradients (up to tens of megavolts per meter) at frequencies between ~10 kHz up to ~12 GHz
- RF cavities are located intermittently along the beam pipe


The synchronisation is crucial

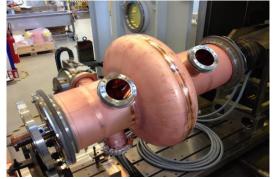



Components of a typical RF system


Components of a typical RF system

Example of RF cavities developed for (large) particle accelerators

Normal-conducting cavities


RF quadrupole Drift tube linac

X-band high gradient accelerating structures

Also very promising for medical accelerators (FLASH therapy)

Superconducting cavities

Bulk Nb or Nb/Cu elliptical cavities

Exotic cavities: Bulk Nb crab cavities for LHC

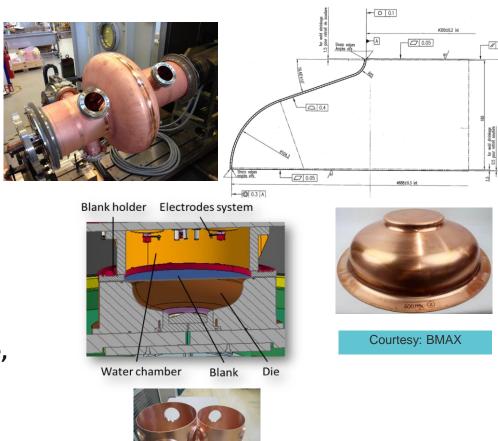
Large scale projects (LHC, ILC, ESS, CERN FCC) need 100s or even 1000s accelerating cavities (http://cern.ch/fcc)

Technology challenges for superconducting cavities

- Usually based either on copper with a Nb coating, or made out of bulk Niobium
- Prototyping is typically done at CERN, then the technology is exported to industry
- Today, there are only 2 companies in Europe, which can manufacture complete bulk Nb cavities, including surface chemistry and heat treatments. A few others can provide individual part only.

Challenges:

- Need VERY GOOD quality substrates:
 - Highly pure base material, 3D-forged OFE copper (tight specifications), high-purity Nb with RRR >=300.
 - No grinding on internal surfaces (exposed to RF fields). Tolerances ~10 100 μm.
 - Removal of surface damage layer (100-200 μm) by chemistry (buffered chemical polishing BCP, Electro-polishing EP)
 - Final surface roughness ~0.1 0.2 μm.
 - Full penetration electron-beam welds...


25.05.2022

Need VERY HIGH quality Nb coating (few μm)

Production of superconducting cavities

- Production of copper "half cells", \bigcirc ~700 mm with tight tolerances (e.g.: parallelism =50 μ m, shape accuracy =0.4 mm)
 - Deep drawing (in the past)
 - Spinning (difficult but understood)
 - Electro-Hydro Forming : successful collaboration with BMAX (France)
- Electron-Beam welding of half cells
- Smooth inner surface needed (in the past we welded from the inside, now full penetration from outside)
- Rolling and EB-welding of tubes, extrusion of ports, flanges...

Seamless & cost-efficient technique would be used for thousands of cavities in institutes all over the world...

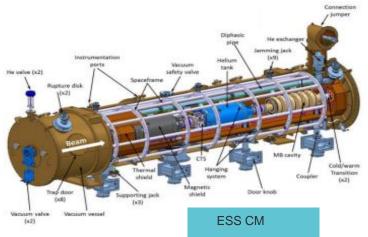
New CERN development for FCC

SWELL: Slotted Waveguide ELLiptical Cavity

- A 600 MHz elliptical cavity with 4 slots for strong higher order mode damping
 - Very attractive for all high current accelerators
- Fabrication & assembly:
 - Machining 4 quadrants out of bulk Copper
 - Nb coating of quadrants
- Engineering challenges: assembly (clamping), vacuum, tuning...
- Cooling: He channels are drilled into the bulk material: no more Helium tank!
- All around cavity that could replace most of the other cavities presently foreseen for the FCC-ee
- Prototyping at 1.3 GHz started

If successful the SWELL cavity would be used in many accelerators all over the world...

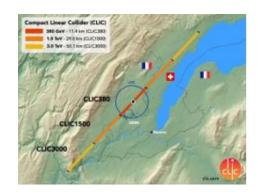
Courtesy: I. Syratchev,
F. Peauger

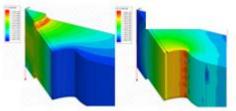


Production of cryomodules (CM)

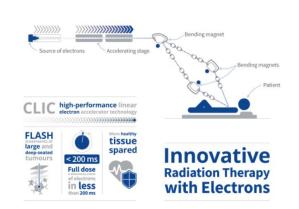
- SC cavities must be housed in complex, state-of-the-art helium-cooled CM (operating temperatures 1.6 K to 4.5 K)
- Large variety of CM designs, many common features:
 - Integration and simulations studies
 - Vacuum vessel with thermal and magnetic shielding
 - Cold mass supporting system, alignment, tuning system, cryostat & piping
 - Beam vacuum gate valves, pressure relief devices
 - Instrumentation and cables (RF, temperature, pressure)
 - RF power couplers, HOM couplers
- Manufacturing of mechanical parts and assembly (mostly done in clean rooms) are usually subcontracted to external companies

All major scientific projects require tens or even hundreds of cryomodules

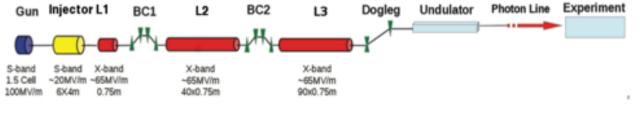


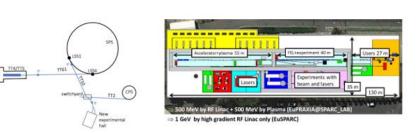

X-band normal-conducting high gradient accelerating structures

- The Compact Linear Collider (CLIC) is a proposed multi-km long accelerator that is being designed as an addition to CERN's accelerator complex (https://clic.cern/)
- The design and technology developments for CLIC focused on reduced cost, and increased <u>acceleration and energy</u> efficiency
- Contributed to the progress of highly accurate design simulation tools & competences
- Incorporates accelerating structures to produce accelerating gradients as high as 100 MV per metre, operating at 12 GHz
 - Diamond tool ultra-precision machining (mechanical tolerances of < few μ m)
 - Turning and milling
 - Strict qualification & CMM metrology (coordinate measuring machine)
 - Assembly: Cu diffusion bonding, brazing, EB welding
 - Micron-precision alignment discs (~10 μm with ~ 26 discs)



15


X-band and high gradient applications overview


Inverse Compton Scattering Sources

Proton Beam Therapy

X-Ray Free-Electron Lasers (XFEL)

GEV-Range Research Linacs

FLASH Radiotherapy

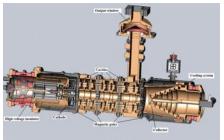
Courtesy: W.Wuensch

Metal additive manufacturing

- Part of the European IFAST project (Innovation Fostering in Accelerator Science and Technology) (https://indico.cern.ch/event/1133254/)
- Covers all domains:
 - Vacuum, diagnostics, cooling, cryogenics,...
 - RF (some examples):
 - CLIC RF spiral & compact load (titanium)
 - Higher order mode couplers (niobium)
 - OFE-Cu RFQ ¼ sector (Fraunhofer IWS, Rosler IT, Riga TU)
- Important efforts are aimed at:
 - Optimizing the metal powder production/quality
 - Improving the material density, roughness, and accuracy
 - Improving the surface finishing (micro-mechanical polishing)

The activity for accelerator components ~ doubles every year

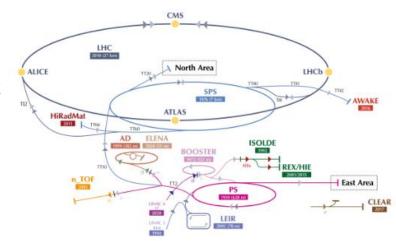
Courtesy: A. Grudiev, P.Trubacova, R. Gerard, T. Torims (TU/CERN)



RF power amplifiers

- Higher energy efficiency (HE) power systems is a must for all machines
- Impressive CERN-driven progress in High Efficiency Klystron technologies in recent years
 - Sustained efforts to demonstrate > 80% efficiency (~20% improvement)
 - Klystrons are needed for 'all' high RF power & high frequency systems
 - Thales (France) is the only European supplier for high-power klystrons (not yet in x-band)
- Strong demand for solid-state high-power pulse modulators and RF systems
 - ScandiNova Systems AB (Sweden) is by its break-through technology a world leader
- Solid state amplifiers are the go-to for many accelerator power systems:
 - Examples: SOLEIL 4×190kW 352 MHz, SPS 32×135kW 200 MHz (w. Thales Gérac)

Continuous demand for new HE RF power sources (incl. replacement of obsolete technologies)



Controls systems

- Continuous need for upgrades or new developments for the accelerator complex
- "Industrial" solutions:
 - VMEbus Crates + power supplies + remote management
 - Industrial PCs: ~ 750 operational IPCs for the on-line control of the complex
 - High-performance server platforms (Quads) and storage devices for the Data Center
 - μTCA based developments
- "CERN-born" technologies (mostly open-source design (see https://www.ohwr.org)
 - White Rabbit: high performance timing system provides sub-nanosecond synchronization
 -> used worldwide

Dynamic adaptation and customization of fast-changing technologies

Typical Low-level RF board for LHC

Summary

- Accelerator technology typically demands (very) long R&D phases
- The technology advances are then often used for industrial/medical machines
 - Example: Deep Electron FLASH Therapy market could represent tens of machines per year (> ½ billion €)
- Experience show that companies involved on prototyping or small series, are often in a prime place once technologies go industrial
- The maintenance and upgrade of the existing CERN accelerator complex requires continuous contact with leading-edge industries of many types
- The future CERN project (FCC or CLIC) would need respectively ~1000 or ~200'000 cavities and hundreds of RF power systems over a 20 year period, starting ~2030
- CERN is actively promoting technology transfer to industry with its Knowledge Transfer (KT) group

Many thanks for your attention

