
AV – Madgraph4GPU WIP (madevent + cudacpp integration) 16 May 2022 1

Madgraph4gpu progress and WIP:
madevent + cudacpp integration

(i.e. additional plumbing and soldering...)

Andrea Valassi (CERN)

Madgraph on GPU development meeting, 16th May 2022

https://indico.cern.ch/event/1154531

https://indico.cern.ch/event/1154531

AV – Madgraph4GPU WIP (madevent + cudacpp integration) 16 May 2022 2

Overview – progress in last three weeks
• Follow up on my April 25 talk - we also had meetings with POWHEG and ATLAS on May 13

• Alphas, basics within cudacpp (gg_tt* and ee_mumu) – PR #434
– Extend Stefan’s cudacpp gg_tt patch, fix tests, fix memory access to couplings (reported on Apr 25)

– New: backport to code generation (generalized from gg_tt gc10/gc11 to any process-specific couplings)

– Added event-by-event Gs to fbridge.inc interface (but not yet connected to Fortran MadEvent)

• Alphas, generalize to other processes (uu_dd and EFT gg_h) – PRs #440, #446, #449, #450
– Consistent (but improvable) framework to handle mix of dependent/independent couplings/parameters

• Not tested yet: QCD+EW process with both dependent (evt-by-evt) and independent (fixed) couplings, issue #438

– Tested also clang and icx (fixed memory access to couplings with different SIMD vector extensions)

– Warning: the handling of model parameters needs several improvements, see issue #448
• e.g. EFT only ok ‘#ifdef MGONGPU_HARDCODE_PARAM’ (computing couplings from Gs requires other parameters)

• Alphas, connect cudacpp to ALL_G common in fortran MadEvent – PRs #452, #453
– Event-by-event comparison of fortran ME and cudacpp ME with varying renormalization scale now ~ 1!

– WIP (PR #454) on detailed comparison of physics results and of computing performance – see later
• WIP also on doing the ME calculation ONLY in cudacpp and not in fortran – will need multichannel API

• WIP also on improving Makefiles to build both fortran and cudacpp in .mad (eg ‘make avxall –j’), issue #400

• Multichannel
– TODO: integrate Olivier’s ME single-diagram factors GPU patch (from standalone gpu)

– TODO: port code generation to Olivier’s latest 340 branch?

• Unweighting
– TODO: random color, random helicity – should be easy?

https://indico.cern.ch/event/1147370
https://github.com/madgraph5/madgraph4gpu/pull/434
https://github.com/madgraph5/madgraph4gpu/pull/440
https://github.com/madgraph5/madgraph4gpu/pull/446
https://github.com/madgraph5/madgraph4gpu/pull/449
https://github.com/madgraph5/madgraph4gpu/pull/450
https://github.com/madgraph5/madgraph4gpu/issues/438
https://github.com/madgraph5/madgraph4gpu/issues/448
https://github.com/madgraph5/madgraph4gpu/pull/452
https://github.com/madgraph5/madgraph4gpu/pull/453
https://github.com/madgraph5/madgraph4gpu/pull/454
https://github.com/madgraph5/madgraph4gpu/issues/400

AV – Madgraph4GPU WIP (madevent + cudacpp integration) 16 May 2022 3

WIP (preliminary!) – physics comparison

• Started analysing event-by-event ratios of cudacpp to fortran ME – should be == 1!

– Multichannel is disabled for now (compare “ME”, not “ME * channel enhancement factor”)

– New: enabled variable renormalization scale (evt-by-evt Gs and alpha QCD), ratio now ~ 1

• Deviations of cudacpp/fortran ratio from 1 are non negligible – and asymmetric!

– eemumu (commit f6cfe83) → (ratio – 1) is in [–9E-16, +7E-16] OK!

– ggtt (commit f84150e) → (ratio – 1) is in [–7E-05, +5E-06] NOT OK?

– ggttggg (commit a949146) → (ratio – 1) is in [–4E-05, +6E-04] NOT OK?

– NB: results above are for double precision cudacpp, deviations are higher for floats

– NB: cuda and cpp are in good agreement with each other – they both deviate from fortran

• To be understood:

– Why do large deviations only happen for QCD processes? (bug in my code?...)

• Related to running of alphas? (Try the same tests without alphas running?)

• Related to color algebra?

• Related to different way of computing jamp2 in cudacpp and fortran (+=, +=... vs = + +...)?

– Is it possible to remove them? Or otherwise are they acceptable by physicists?

– (Have not tested yet: comparison of cross sections, or of average ME ratio...)

https://github.com/madgraph5/madgraph4gpu/pull/454/commits/f6cfe8382e2ab1c6d3c9dd499064e9781dd717e4
https://github.com/madgraph5/madgraph4gpu/pull/454/commits/f84150e359efb76ddc98b202b80bcd0de55b449c
https://github.com/madgraph5/madgraph4gpu/pull/454/commits/a949146a44352d5411fc72b0b657a2dd220f770b

AV – Madgraph4GPU WIP (madevent + cudacpp integration) 16 May 2022 4

WIP (preliminary!) – performance comparison

• A few simple tests of Madevent, with MEs computed both in fortran and in cudacpp
– Three timing components

• Fortran: common overhead (random numbers, sampling, event I/O...) – hopefully small!

• Fortran: ME calculation

• Cuda or Cpp: ME calculation (TODO: increase Cuda grids, limited to 32 threads per grid now!)

• Preliminary timing measurements (double precision)
– ggttggg (commit a949146), 1056 MEs

• 1.5-2.0s overhead + 39.5s fortran ME + 3.7s cpp/512y ME (or 9.2s cuda ME)

• cpp/512y 2.86E2 MEs/s vs fortran 2.66E1 MEs/s: cpp/512y throughput ~10x higher than fortran
– Consistent with cpp/512y standalone throughput 2.90E2 in 8769cb7 (should check “bridge” SA throughput)

– eemumu (commit f6cfe83), 524320 MEs
• 4.60s overhead + 3.70s fortran ME + 0.10s cpp/512y : cpp/512y 37x fortran, very high overhead

– ggtt (commit f84150e), 524320 MEs
• 22.3s overhead + 9.0s fortran ME + 1.3s cpp/512y : cpp/512y 7x fortran, very high overhead

• To be understood:
– Where is the factor 10x coming from in ggttggg? (forget the simpler 2 to 2 processes)

• Probably 4x from “512y” vectorization?

• Probably 2x from fast math?

• Maybe non-vectorized non-fast-math cpp is also slightly better than fortran now?

• NB fortran production version can be a factor ~2 faster through helicity recycling (not included here)

– Can the overhead be reduced further? (1.5-2.0s not negligible with respect to 3.7s)

https://github.com/madgraph5/madgraph4gpu/pull/454/commits/a949146a44352d5411fc72b0b657a2dd220f770b
https://github.com/madgraph5/madgraph4gpu/blob/8769cb71ee5bac3b5933c9651ba583422863151a/epochX/cudacpp/tput/logs_ggttggg_mad/log_ggttggg_mad_d_inl0_hrd0.txt
https://github.com/madgraph5/madgraph4gpu/pull/454/commits/f6cfe8382e2ab1c6d3c9dd499064e9781dd717e4
https://github.com/madgraph5/madgraph4gpu/pull/454/commits/f84150e359efb76ddc98b202b80bcd0de55b449c

