
Aperture measurements in LHC Run 3 Commissioning

P. Hermes, G. Azzopardi, R. Bruce, M. D' Andrea, B. Lindstrom, D. Mirarchi, S. Redaelli, F. Van der Veken

On behalf of the LHC Collimation Team

Joint LNO/NDC section meeting 27.04.2022

Introduction

- Machine Aperture defines clearance for circulating beams
- Aperture must be protected by the collimation system

At injection:

Aperture measurements for clearance to inject high intensity beams

At collision:

Measured aperture of inner triplets at experimental IRs defines β^* reach

Beam based aperture measurements:

Crucial part of the LHC commissioning and early detection of issues in beam tests!

Aperture measurement techniques

Global	Collimator scan method
	 Beam based alignment (BBA)
	 AC Dipole excitation (Tested in 2017 MD)

Delivers

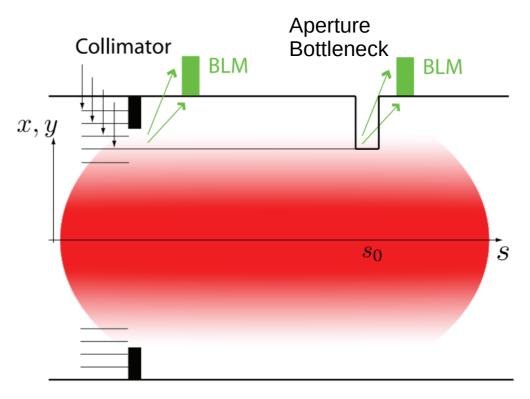
- The smallest normalized aperture in the machine
- The location at which the normalized aperture is smallest (bottleneck)

Local	 Local orbit bump method 						

Delivers the geometrical aperture at a dedicated location of interest in 2D

Collimator scan method

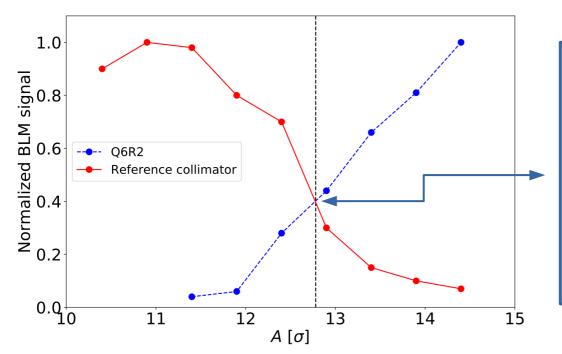
Measurement


Step 1: Start with primary collimator at nominal gap

Step 2: Excite bunch with the transverse damper

Step 3: Retract TCP by a given step size

Step 4: Excite again with the transverse damper

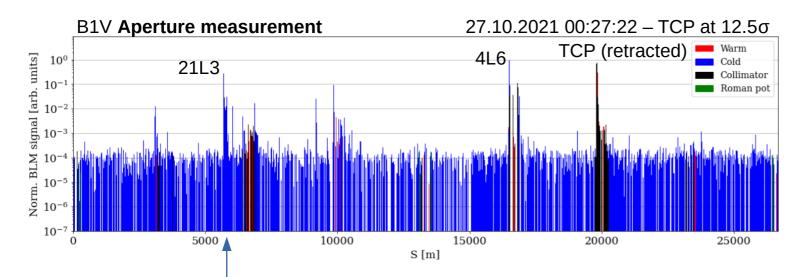

Step 5: Repeat step 3 + 4

N. Fuster-Martinez et al.: Beam-based aperture me asurements with movable collimator jaws as perfor mance booster of the CERN Large Hadron Collider

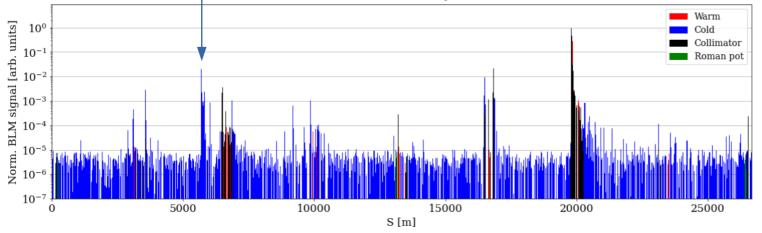
Collimator scan method

N. Fuster-Martinez et al.: Beam-based aperture me asurements with movable collimator jaws as perfor mance booster of the CERN Large Hadron Collider

Analysis


Step 1: Normalize peak BLM signal at each excitation for reference collimator and location of aperture bottleneck

Step 2: Plot normalized BLM signals as function of collimator gap at excitation


Step 3: Global aperture is amplitude where interpolated collimator and bottleneck BLM signals are identical

2021 – Discovery of the RF finger

B1V loss map measurement 26.10.2021 22:22:01

21L3 was not the highest loss peak! But: strange behaviour in BBA observed.

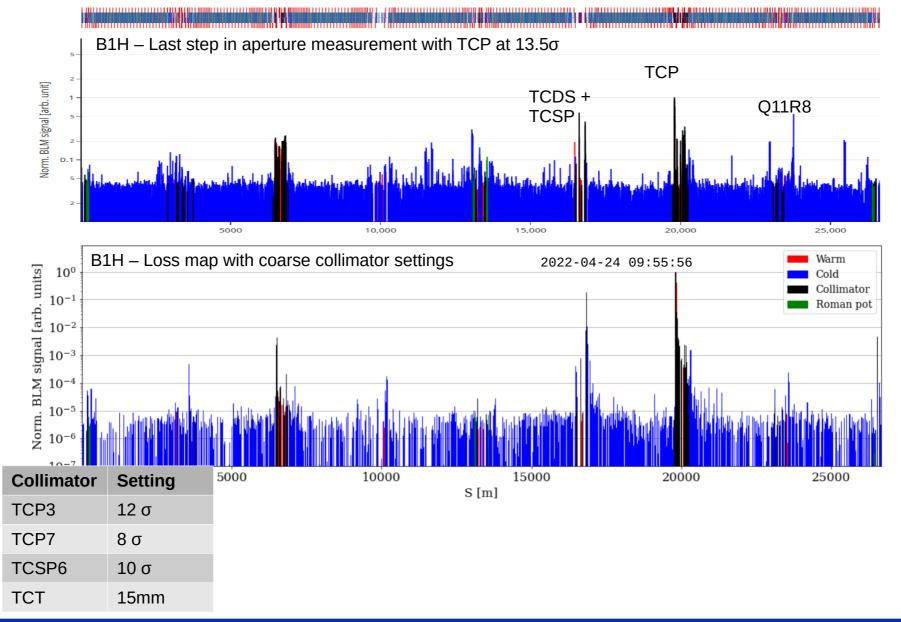
Buckled RF finger found in 21L3 Source: CERN Courrier

Measurement time and setup

4/24/2022	3				Sunday
	М	4	COL	Coarse collimator setup & global injection aperture	
	М	4	COL	Coarse collimator setup & global injection aperture/ NL optics	
	Α	4	ОМС	Optics at injection (NL)	
	А	4	OMC/OP	Optics at injection (NL) / 6.5 TeV ramp of ballistic optics, dumped, IT L2 quench	
	Ν	4	OP	Cryo recovery IT L2 quench	
	Ν	4	OP	Inject and dump sequence, BPM quality checks	

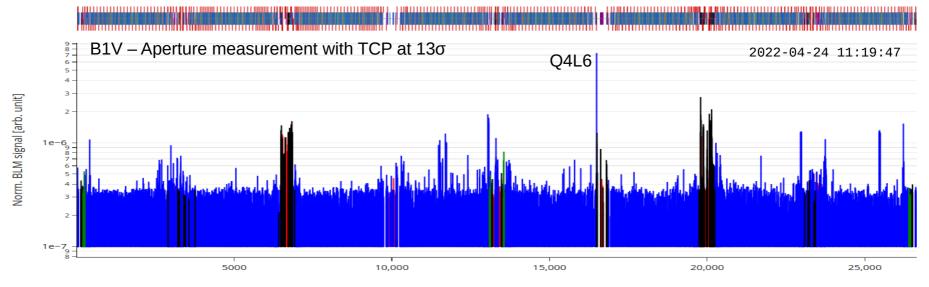
- First preliminary measurements done 24/04/2022 (morning)
- Flat machine without crossing or separation bump
- Global aperture: Applied collimator scan method
- Link to LHC Logbook

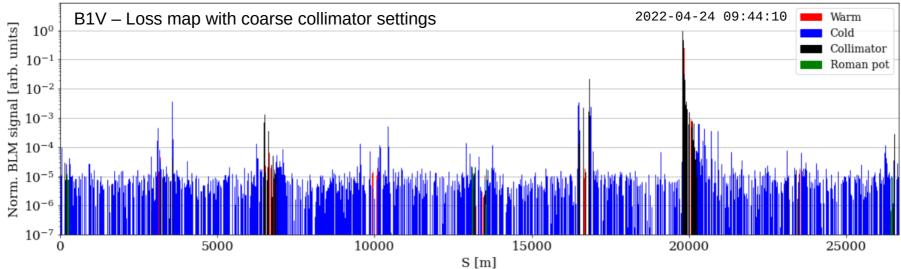
Results

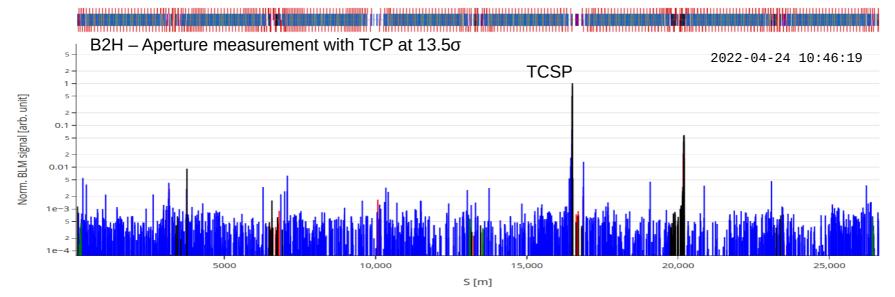

- Except B1V: global aperture bottleneck not found with collimator scan
- Next measurements: fully retract TCPs and cross-validate with beam based alignment (BBA) method (at which amplitude was the halo scraped?)
- TCP alignment issue B2H: impact on aperture?

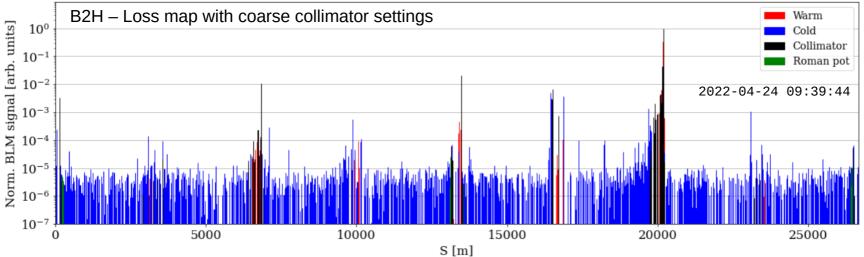
	20	22	2018		
Plane	Aperture (σ)	Bottleneck	Aperture (σ)	Bottleneck	
B1H	>13	Not found	13.3 - 13.8	Q4R6	
B1V	12.5-13.0	Q4L6	12.2 - 12.7	Q4L6	
B2H	> 13	~Warm IR6	13.0 - 13.5	Q4L6/Q6L8	
B2V	> 13	~Q4R6	12.5 - 13.0	Q4R6	
	Without	bumps	With bumps		

LHC Logbook

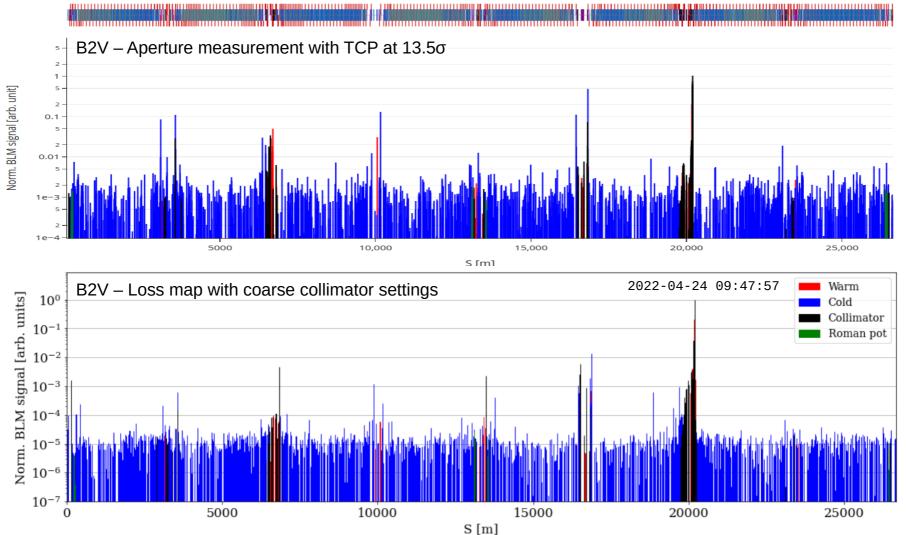



Results – B1H


Results – B1V



Results – B2H



Results – B2V

2022-04-24 11:44:16

Summary

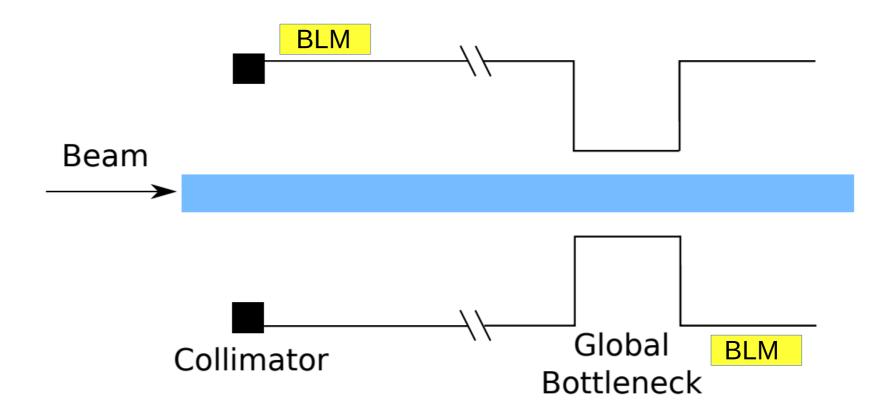
- First preliminary aperture measurements at injection (flat machine)
- Good aperture measured no obvious show stoppers identified
- Collimator scans should be analysed together with measured loss maps + BBA method

Outlook Run3 Commissioning

- Verify results with BBA method (future: perform at the end of each collimator scan measurement)
- Repeat injection measurements with established reference orbit + optics: defines clearance for high intensity
- Global + local measurements with squeezed beams at top energy: defines β^* reach

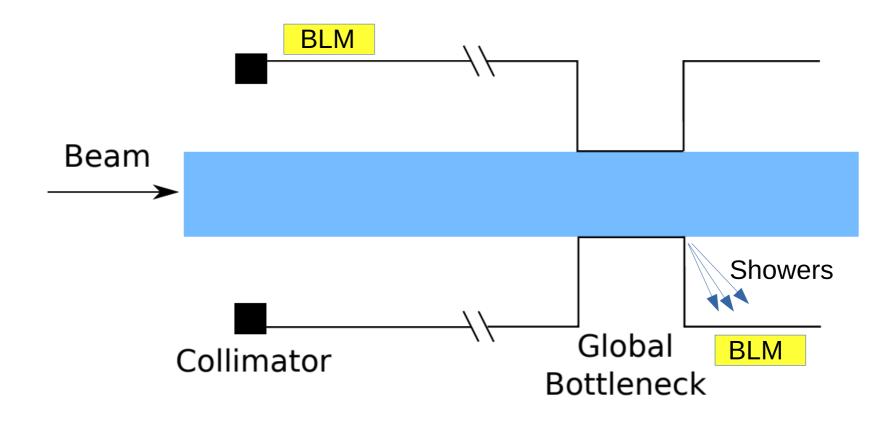
LHC Logbook

Previous measurements

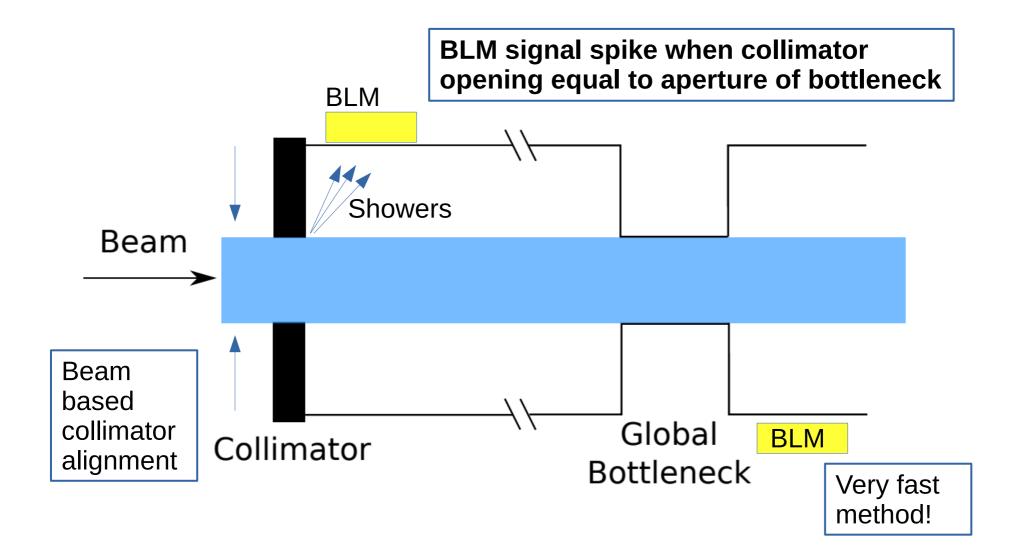

Table 4. Summary of the measured global aperture bottlenecks per beam and plane at injection energy. The aperture measurements are expressed by the reference collimator half-gap before and after exposing the bottleneck. All values are given in units of beam size σ , for $\epsilon_n = 3.5 \mu m$. The bottleneck location is also indicated for each beam and plane and the beam-based aperture measurement method used.

	${f E}$ $[{ m TeV}]$	Method	B1H	B1V	B2H	B2V
2010	0.450	Tune resonance blow-up +coll. scan	12.5-13.0 (Q6R2)	13.5-14.0 (Q4L6)	14.0-14.5 (Q5R6)	13.0-13.5 (Q4R6)
2011	0.450	Tune resonance blow-up +coll. scan	12.0-12.5 (Q6R2)	13.0-13.5 (Q4L2)	12.5-13.0 (Q5R6)	13.1-13.6 (Q4R6)
2012	0.450	Controlled white noise emittance blow-up+coll. scan	11.5-12.0 (Q6R2)	12.0-12.5 (Q4L6)	12.5-13.0 (Q5R6)	12.5-13.0 (Q4R6)
2015	0.450	Controlled white noise emittance blow-up+coll. scan	11.6-12.1 (MBRC.4R8)	12.1-12.6 (Q6L4)	$12.5-13.0 \\ (Q6L6)$	12.0-12.5 (Q4R6)
2016	0.450	Controlled white noise emittance blow-up+coll. scan	12.5-13.0 (MBRC.4R8)	12.0-12.5 (Q6L4)	12.5-13.0 (TCDQM.4L6)	12.5-13.0 (Q4R6)
2017	0.450	Controlled white noise emittance blow-up+coll scan	13.1-13.6 (Q6R2)	12.2-12.7 (Q4L6)	$13.2-13.7 \\ (Q6L8)$	12.8-13.3 (Q4R6)
2018	0.450	Controlled white noise emittance blow-up+coll scan	13.3-13.8 (Q4R6)	12.2-12.7 (Q4L6)	$\begin{array}{c} 13-13.5 \\ (\text{Q4L6 \& Q6L8}) \end{array}$	12.5-13.0 (Q4R6)

N. Fuster-Martinez et al.: Beam-based aperture me asurements with movable collimator jaws as perfor mance booster of the CERN Large Hadron Collider



Beam-based alignment method



Beam-based alignment method

Beam-based alignment method

home.cern