

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

Kirchhoff-Institut für Physik

ATLAS-Heidelberg Meeting @ Trifels 2022

$Z\gamma\gamma$ – What it Tells us about EW Interactions

Philipp Ott Kirchhoff-Institute for Physics, Heidelberg University

Electroweak Interactions

- Electromagnetic and weak (EW) interactions: γ , W, Z
- EW theory predicts gauge self-interactions
 - \Rightarrow WWZ,WW γ (TGC) and WWWW,WW $\gamma\gamma$, .. (QGC)

Coupling between 3,4 neutral EWK gauge bosons forbidden in SM

• Verify predictions of EW theory for *rare* processes ($Z\gamma\gamma$) + sensitivity for new physics

Electroweak Interactions

- Electromagnetic and weak (EW) interactions: γ , W, Z
- EW theory predicts gauge self-interactions
 - \Rightarrow WWZ,WW γ (TGC) and WWWW,WW $\gamma\gamma$, .. (QGC)

• Coupling between 3,4 neutral EWK gauge bosons forbidden in SM

Verify predictions of EW theory for *rare* processes (*Zγγ*)
 + sensitivity for new physics

$Z\gamma\gamma$ Analysis

Overview

- Run2 dataset (2015-2018), fully leptonic $Z(\rightarrow ee, \mu\mu) + \gamma\gamma$
- 2 isolated photons + 1 OSSF lepton pair
- Integrated + differential cross section @ particle level

Background contamination in the signal region

- Any process with photons and charged same-flavour leptons
- Limited performance of particle identification algorithms

Minor backgrounds

- $t\bar{t}\gamma\gamma$ process, 2 leptons from $t \rightarrow Wb$ chain
- $ZZ \rightarrow llll (e \rightarrow \gamma \text{ fakes})$

Dominant background

Non-prompt photon production in jets

Electrons

(Missing track in ID \rightarrow fake photon) Contamination of $ZZ \rightarrow llll$ **Jets**

(Non-prompt γ production within jets)

Jets

(Non-prompt γ production within jets)

Philipp Ott

5

Fake Photons from jets

- Non-prompt photons surrounded by jet remnants
 - \Rightarrow Large isolation energy, hadronic activity
- Derive templates for prompt/non-prompt γ
 - \Rightarrow Z $\gamma\gamma$ signal, Z γ j + Zj γ + Zjj backgrounds
- Fit templates to measured isolation energy in data
 - \Rightarrow 2D Template Fit

Observed Events in Signal Region

	$e^+e^-\gamma\gamma$	$\mu^+\mu^-\gamma\gamma$
N^{obs}	148	171
$N_{j \rightarrow \gamma f akes}$ $N_{t\bar{t}\gamma\gamma}$ $N_{\ell\ell\ell\ell}$ $N_{WZ\gamma}$ N_{ZH} $N_{Z\gamma+\gamma}$ $N_{Z+\gamma\gamma}$	$29.8 \pm 5.7 (stat.) \pm 5.5 (sys.)$ $6.4 \pm 0.4 (stat.) \pm 1.4 (sys.)$ $1.03 \pm 0.10 (stat.) \pm 0.51 (sys.)$ $0.69 \pm 0.06 (stat.) \pm 0.35 (sys.)$ $1.08 \pm 0.01 (stat.) \pm 0.22 (sys.)$ $2.07 \pm 0.16 (stat.) \pm 0.72 (sys.)$ $1.44 \pm 0.04 (stat.) \pm 0.39 (sys.)$	$34.4 \pm 6.6 (stat.) \pm 6.3 (sys.)$ $8.4 \pm 0.5 (stat.) \pm 1.8 (sys.)$ $1.2 \pm 0.11 (stat.) \pm 0.6 (sys.)$ $0.52 \pm 0.05 (stat.) \pm 0.26 (sys.)$ $1.38 \pm 0.01 (stat.) \pm 0.28 (sys.)$ $2.74 \pm 0.21 (stat.) \pm 0.96 (sys.)$ $1.90 \pm 0.05 (stat.) \pm 0.51 (sys.)$
N ^{data} _{sig}	$105.5 \pm 12.2 (stat.) \pm 8.1 (sys.)$	$120.4 \pm 13.1 (stat.) \pm 9.4 (sys.)$
$N_{sig}^{ ext{Sherpa LO}}$ $N_{sig}^{ ext{Sherpa NLO}}$ $N_{sig}^{ ext{MadGraph5_aMC@NLO}}$	$83.0 \pm 1.9 (stat.)$ $91.5 \pm 0.9 (stat.)$ $91.0 \pm 1.0 (stat.)$	$112.2 \pm 2.2 (stat.)$ $119.5 \pm 1.0 (stat.)$ $118.1 \pm 1.2 (stat.)$

Total event composition

- Background contamination
 - Fakes from jets: 64 events (20%)
 - $t\bar{t}\gamma\gamma$: 15 events (5%)
 - $e \rightarrow \gamma$ fakes: 2 events (<1%)
- Dominant $Z\gamma\gamma$ signal process: 226 events (71%)

Measured Cross Section

Integrated cross section

- σ measured @ particle level
 - ⇒ Correct for detector effects

(inefficiency of particle reconstruction, ..)

- $\sigma^{ll\gamma\gamma} = 2.45 \pm 0.20(\text{stat}) \pm 0.22(\text{syst}) \text{ fb}$
- Good agreement between measurement and EW predictions

Integrated fiducial cross-section [fb]

Measured Cross Section

Search for Effects of New Physics

- Effective Field Theory
- Direct search for new physics (@ large scales) not always feasible
 - LHC upper boundary $(13 \times \hat{x})$ TeV

• Use current SM measurements to constrain NP parameters

EFT Interpretation - Lagrangian

• Starting point: SM Lagrangian of dimension $d \le 4$

Constructing the Lagrangian

• Which dimension do we need?

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \sum_{i} \frac{f_i^d}{\Lambda^{d-4}} O_i^d$$

- Uneven dimension (5,7,..) operators violating baryon/lepton conservation
- Dimension 6? Introduces TGC and QGC, can not give rise to neutral QGC
- ⇒ Dimension 8? Only QGC, also valid for neutral bosons
 - \Rightarrow Suppression by Λ^4 , SM contribution expected to dominate

Procedure of generating new samples

- MadGraph5 for matrix element, Pythia8 for parton shower
 - *generate p p > l+ l- a a*
- Add contributions of dimension-8 operators (transverse operators O_{T0-T9})
- How to combine SM + NP in matrix element?

$$|A_{SM} + \sum_{i} c_{i}A_{i}|^{2} = |A_{SM}|^{2} + \sum_{i} c_{i}2Re(A_{SM}A_{i}) + \sum_{i} c_{i}^{2}|A_{i}|^{2} + \sum_{ij,i\neq j} c_{i}c_{j}2Re(A_{i}A_{j})$$

interference term (lin)
$$cross term (neglected)$$

Procedure of generating new samples

- MadGraph5 for matrix element, Pythia8 for parton shower
 - generate p p > l+ l- a a
- Add contributions of dimension-8 operators (transverse operators O_{T0-T9})
- How to combine SM + NP in matrix element?

EFT Interpretation – Differential σ

- Int: dominates at low energies
- Quad: dominates at large energies

- $p_{T,ll}$ offers largest sensitivity for O_{T0-T8}
- Small EFT contribution in fiducial region

EFT Interpretation – Limits

Limit Setting

- Observable p_T^{ll} , what else is needed?
 - 1. SM $Z\gamma\gamma$ production or data
 - 2. EFT contribution (lin + quad)
 - 3. Uncertainties (experimental + theory)
- \Rightarrow Profile likelihood ratio allows to extract limits @ 95% CL

Coefficient	Expected limit [TeV ⁻⁴]	Observed limit [TeV ⁻⁴]
$f_{T,0}$	[-8.91, 8.35]	[-9.87, 9.33]
$f_{T,1}$	[-8.92, 8.35]	[-9.88, 9.34]
$f_{T,2}$	[-18.39, 16.68]	[-20.31, 18.68]
$f_{T,5}$	[-4.18, 4.07]	[-4.64, 4.54]
$f_{T,6}$	[-6.33, 6.23]	[-7.04, 6.94]
$f_{T,7}$	[-14.02, 13.48]	[-15.55, 15.04]
$f_{T,8}$	[-1.48, 1.44]	[-1.64, 1.61]
$f_{T,9}$	[-3.03, 2.92]	[-3.36, 3.26]

First T_1 , T_2 , T_6 , T_7 limits in

ATLAS @ 13 TeV

Conclusion

- Test SM predictions at small σ + gauge self-interaction
 - ⇒ Successful prediction of EW interactions
- Sensitivity for dim-8 operators in context of EFT interpretation

Thanks for your attention!

Coefficient	Expected limit [TeV ⁻⁴]	Observed limit [TeV ⁻⁴]
$f_{T,0}$	[-8.91, 8.35]	[-9.87, 9.33]
$f_{T,1}$	[-8.92, 8.35]	[-9.88, 9.34]
$f_{T,2}$	[-18.39, 16.68]	[-20.31, 18.68]
$f_{T,5}$	[-4.18, 4.07]	[-4.64, 4.54]
$f_{T,6}$	[-6.33, 6.23]	[-7.04, 6.94]
$f_{T,7}$	[-14.02, 13.48]	[-15.55, 15.04]
$f_{T,8}$	[-1.48, 1.44]	[-1.64, 1.61]
$f_{T,9}$	[-3.03, 2.92]	[-3.36, 3.26]

Backup Slides

Constructing the Lagrangian

- Generate new dim-8 electroweak fields via
 - \Rightarrow Covariant derivative D_{μ} of Higgs field ϕ
 - \Rightarrow Field strength tensor W^i_{μ} of SU(2) and B_{μ} of U(1)

Transverse, 4 field strength tensors (no mass limitation) ⇒ 8 Operators

$\mathcal{O}_{S,0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$
$\mathcal{O}_{S,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$
$\mathcal{O}_{S,2} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\nu} \Phi \right)^{\dagger} D^{\mu} \Phi \right]$

$$\mathcal{O}_{T,0} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta} \right] \quad , \quad \mathcal{O}_{T,1} = \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\mu\beta} \widehat{W}^{\alpha\nu} \right] \\ \mathcal{O}_{T,2} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\beta\nu} \widehat{W}^{\nu\alpha} \right] \quad , \quad \mathcal{O}_{T,5} = \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta} \\ \mathcal{O}_{T,6} = \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu} \quad , \quad \mathcal{O}_{T,7} = \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha} \\ \mathcal{O}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta} \quad , \quad \mathcal{O}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha} \; .$$

Longitudinal, 4 Higgs derivatives (exactly 4 massive bosons) ⇒ 3 Operators

$$\begin{aligned} \mathcal{O}_{M,0} &= \operatorname{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\beta}\Phi\right] &, \ \mathcal{O}_{M,1} &= \operatorname{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\nu\beta}\right] \times \left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\mu}\Phi\right] \\ \mathcal{O}_{M,2} &= \left[B_{\mu\nu}B^{\mu\nu}\right] \times \left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\beta}\Phi\right] &, \ \mathcal{O}_{M,3} &= \left[B_{\mu\nu}B^{\nu\beta}\right] \times \left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\mu}\Phi\right] \\ \mathcal{O}_{M,4} &= \left[\left(D_{\mu}\Phi\right)^{\dagger}\widehat{W}_{\beta\nu}D^{\mu}\Phi\right] \times B^{\beta\nu} &, \ \mathcal{O}_{M,5} &= \left[\left(D_{\mu}\Phi\right)^{\dagger}\widehat{W}_{\beta\nu}D^{\nu}\Phi\right] \times B^{\beta\mu} + \mathrm{h.c.} \\ \mathcal{O}_{M,7} &= \left[\left(D_{\mu}\Phi\right)^{\dagger}\widehat{W}_{\beta\nu}\widehat{W}^{\beta\mu}D^{\nu}\Phi\right] &. \end{aligned}$$

Mixed, 2 Higgs derivatives + 2 field strength tensors (at least 2 massive bosons) ⇒ 7 Operators

Constructing the Lagrangian

- Generate new dim-8 electroweak fields via
 - \Rightarrow Covariant derivative D_{μ} of Higgs field ϕ
 - \Rightarrow Field strength tensor W^i_{μ} of SU(2) and B_{μ} of U(1)

Transverse, 4 field strength tensors (no mass limitation) ⇒ 8 Operators

								$\begin{bmatrix} \widehat{W}_{\alpha\nu} \\ \widehat{W}_{\mu\nu} \\ $	mos	st promisi	iγ∞ν] ng
		WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA	
	$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$, $oldsymbol{0}_{oldsymbol{S},2}$	Х	Х	X							
	$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6}, \mathcal{O}_{M,7}$	Х	Х	X	Х	Х	Х	Х			
	$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$	i -	Х	X	Х	Х	Х	Х			
Longitudinal, 4 Higgs derivatives	$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	Х	Х	Х	X	Х	Х	Х	X	X	
(exactly 4 massive bosons)	$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		Х	X	X	Х	X	X	X	X	
\Rightarrow 3 Operators	$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			X			Х	X	Х	X	

Mixed, 2 Higgs derivatives + 2 field strength tensors

(at least 2 massive bosons)

 \Rightarrow 7 Operators

EFT Interpretation – Differential σ

Rivet routine

- Goal: measure inclusive + differential cross section @ fiducial phase space
- Read HepMC (SM, lin, quad) data in Rivet and apply fiducial selection
 - ⇒ Mimics detector-level selection
 - \Rightarrow Rivet provides final state particles, easy to apply selection

EFT Interpretation - Clipping

Restoring Unitarity

- EFT violates unitarity at large energy scales
- EFT contributions *clipped* for energies exceeding scale *E_c*
 - Scale choice: $m_{ll\gamma\gamma}$
- Clipping is done at parton level, before parton shower
 - $m_{ll\gamma\gamma}$ formed per event using LHE file and *lhe_parser.py*

Observed limits for all clipping thresholds

Coefficient	$E_c = 1.1 \text{ TeV}$	$E_c = 1.4 \text{ TeV}$	$E_c = 1.7 \text{ TeV}$	$E_c = 2.0 \mathrm{TeV}$	$E_c = 2.4 \text{ TeV}$	$E_c = 3 \text{ TeV}$	$E_c = 4 \text{ TeV}$	$E_c = 5 \text{ TeV}$	$E_c = \infty$
$f_{T,0}/\Lambda^4$	[-47.03, 41.06]	[-29.62, 26.38]	[-21.61, 19.56]	[-17.36, 15.90]	[-14.24, 13.19]	[-11.91, 11.15]	[-10.49, 9.88]	[-10.05, 9.48]	[-9.87, 9.33]
$f_{T,1}/\Lambda^4$	[-47.03, 41.06]	[-29.62, 26.38]	[-21.61, 19.56]	[-17.36, 15.90]	[-14.24, 13.20]	[-11.91, 11.14]	[-10.50, 9.89]	[-10.05, 9.49]	[-9.88, 9.34]
$f_{T,2}/\Lambda^4$	[-97.67, 80.00]	[-60.73, 51.23]	[-44.42, 38.33]	[-35.51, 31.27]	[-29.16, 26.07]	[-24.55, 22.27]	[-21.51, 19.71]	[-20.67, 18.99]	[-20.31, 18.68]
$f_{T,5}/\Lambda^4$	[-23.80, 22.94]	[-14.18, 13.68]	[-10.47, 10.12]	[-8.28, 8.02]	[-6.83, 6.65]	[-5.67, 5.54]	[-4.95, 4.84]	[-4.72, 4.62]	[-4.64, 4.54]
$f_{T,6}/\Lambda^4$	[-34.83, 33.44]	[-21.56, 20.88]	[-15.76, 15.35]	[-12.67, 12.37]	[-10.31, 10.11]	[-8.67, 8.52]	[-7.52, 7.41]	[-7.19, 7.08]	[-7.04, 6.94]
$f_{T,7}/\Lambda^4$	[-81.59, 75.19]	[-49.88, 46.50]	[-35.44, 33.43]	[-28.46, 26.99]	[-23.19, 22.15]	[-19.30, 18.55]	[-16.73, 16.14]	[-15.85, 15.33]	[-15.55, 15.04]
$f_{T,8}/\Lambda^4$	[-8.83, 8.37]	[-5.29, 5.07]	[-3.81, 3.67]	[-3.05, 2.95]	[-2.49, 2.42]	[-2.07, 2.01]	[-1.78, 1.74]	[-1.69, 1.65]	[-1.64, 1.61]
$f_{T,9}/\Lambda^4$	[-17.71, 16.36]	[-10.45, 9.80]	[-7.78, 7.35]	[-6.25, 5.94]	[-5.06, 4.85]	[-4.18, 4.03]	[-3.62, 3.51]	[-3.44, 3.33]	[-3.36, 3.26]

Strength of limits

- Few 8 TeV + one 13 TeV measurement (Closure)
- First T_1 , T_2 , T_6 , T_7 limits in ATLAS @ 13 TeV

Coefficient	Limit [TeV ⁻⁴]
f_{T0} (13TeV)	[-0.095,0.085]
f_{T1} (8TeV)	[-200,200] → [-9.88,9.34]
f_{T2} (8TeV)	[-400,400] → [-20.31,18.68]
f_{T5} (13TeV)	[-0.09,0.10]
f_{T6} (8TeV)	[-1900,1900] → [-7.04,6.94]
f_{T7} (8TeV)	[-4300,4300] → [-15.55,15.04]
f_{T8} (13TeV)	[-0.06,0.06]
f_{T9} (13TeV)	[-0.13,0.13]

Limits from $WV\gamma$, $Z\gamma$ dijet, $Z\gamma\gamma$, $W\gamma\gamma$

Coefficient	Expected limit [TeV ⁻⁴]	Observed limit [TeV ⁻⁴]
$f_{T,0}$	[-8.91, 8.35]	[-9.87, 9.33]
$f_{T,1}$	[-8.92, 8.35]	[-9.88, 9.34]
$f_{T,2}$	[-18.39, 16.68]	[-20.31, 18.68]
$f_{T,5}$	[-4.18, 4.07]	[-4.64, 4.54]
$f_{T,6}$	[-6.33, 6.23]	[-7.04, 6.94]
$f_{T,7}$	[-14.02, 13.48]	[-15.55, 15.04]
$f_{T,8}$	[-1.48, 1.44]	[-1.64, 1.61]
<i>f</i> _T ,9	[-3.03, 2.92]	[-3.36, 3.26]

EFT Interpretation – CMS Limits

		$Z\gamma\gamma$ (TeV ⁻⁴)		
		Parameter	Expected	Observed
		$f_{\rm M2}/\Lambda^4$	—	—
CMS $Z\gamma\gamma$ analysis	(⁻	$f_{\rm M3}/\Lambda^4$		—
 <u>Paper</u> published May 28th, 2021 	$q \xrightarrow{Z/\gamma^*} \ell^+$	$f_{\rm T0}/\Lambda^4$	[-4.86, 4.66]	[-5.70, 5.46]
		$f_{\rm T1}/\Lambda^4$	[-4.86, 4.66]	[-5.70, 5.46]
• Significance of 4.8σ	γ	$f_{\rm T2}/\Lambda^4$	[-9.72, 9.32]	[-11.4, 10.9]
Different phase space selection		$f_{\rm T5}/\Lambda^4$	[-2.44, 2.52]	[-2.92, 2.92]
	\overline{q} γ	$f_{\rm T6}/\Lambda^4$	[-3.24, 3.24]	[-3.80, 3.88]
 Most notably: FSR included 		$f_{\rm T7}/\Lambda^4$	[-6.68, 6.60]	[-7.88, 7.72]
		$f_{\rm T8}/\Lambda^4$	[-0.90, 0.94]	[-1.06, 1.10]
		$f_{\rm T9}/\Lambda^4$	[-1.54, 1.54]	[-1.82, 1.82]

CMS Lepton kinematics affected by FSR

30.05.2022

The Large Hadron Collider

- World's largest/most-powerful particle collider
- Located close to Geneva (Border of France-Switzerland)
- LHC accelerates *p*-*p*, *Pb*-*Pb*, *Xe*-*Xe* ions at energies up to $\sqrt{s} = 13$ TeV
 - \Rightarrow Two beam pipes guiding beams in opposite direction
 - \Rightarrow Beam consists of >2000 bunches with 10¹¹ protons
- Major data-taking periods: Run-2 (2015-2018), Run-3 (2022-2025)

A Toroidal LHC ApparatuS

- General-purpose detector with $\sim 4\pi$ coverage
- 44m long, diameter of 25m
- 25ns bunch spacing \rightarrow collisions @ 40MHz \rightarrow 1kHz (trigger system)
- Consists of multiple sub-detectors + magnetic system surrounding interaction point
 - ⇒ Inner Detector: track reconstruction of charged particles
 - \Rightarrow Calorimeter: electromagnetic (*e*, γ ,jets), hadronic (jets)
 - \Rightarrow Muon Spectrometer (μ)

innermost to outermost

2012 $Z\gamma\gamma$ analysis: 20.3 fb⁻¹ Run 2: 139 fb⁻¹ N = $\sigma \times L_{int}$ 7 × luminosity

VBF, VBS, and	Triboson Cross S	ection Measu	reme	nts State	us: July i	2021		∫£dt	Reference
2/2/2/	$\sigma = 72.6 \pm 6.5 \pm 9.2$ fb (data)								PLB 781 (2018) 55
Zvy ->llvy	NNLO (theory) $\sigma = 5.07 + 0.73 - 0.68 + 0.42 - 0.39$ fb (data)	ATLAS Preliminary	/					20.2	JHEP 2002 (2020) 057 PRD 93, 112002 (2016)
$-\frac{1}{10} = \frac{1}{10}$	MGFM NLO (theory) $\sigma = 3.48 + 0.61 - 0.56 + 0.3 - 0.26$ fb (data)	ALAO HEIMINALY	·					20.3	PRD 93, 112002 (2016)
$W_{\gamma\gamma \rightarrow \ell \nu \nu \nu}$	$\sigma = 6.1 + 1.1 - 1 \pm 1.2 \text{ fb (data)}$	$\sqrt{s} = 7.8.13$ TeV						20.3	PRL 115. 031802 (2015)
$-[n_{iet} = 0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1 - 0.9$ fb (data)	γ ³ = 7,0,10 τev						20.3	PRL 115. 031802 (2015)
$WW\gamma \rightarrow e\gamma\mu\nu\gamma$	$\sigma = 1.5 \pm 0.9 \pm 0.5 \text{ fb} \text{ (data)}$ $VBENI 0+CT14 (NI O) (theory)$		_					20.2	EPJC 77 (2017) 646
	$\sigma = 0.848 \pm 0.098 \pm 0.081 \text{ pb (data)}$							139	ATLAS-CONF-2021-039
vv vv vv , (tot.)	$\sigma = 230 \pm 200 + 150 - 160 \text{ fb (data)}$ Madaraph5 + aMCNLO (theory)			4				20.3	EPJC 77 (2017) 141
– WWW <i>→ℓvℓv</i> ii	$\sigma = 0.24 + 0.39 - 0.33 \pm 0.19 \text{ fb} (data)$ Madgraph5 + aMCNLO (theory)		A					20.3	EPJC 77 (2017) 141
$-WWW \rightarrow l v l v l v$	σ = 0.31 + 0.35 - 0.33 + 0.32 - 0.35 fb (data) Madgraph5 + aMCNLO (theory)			•				20.3	EPJC 77 (2017) 141
WWZ , (tot.)	σ = 0.55 ± 0.14 + 0.15 - 0.13 pb (data) Sherpa 2.2.2 (theory)	These						79.8	PLB 798 (2019) 134913
	LHC-HXSWG (theory)	Lneory		100				139	ATLAS-CONF-2020-027
UJ VOF	σ = 2.43 + 0.5 - 0.49 + 0.33 - 0.26 pb (data) LHC-HXSWG YR4 (theory)							20.3	EPJC 76 (2016) 6
	σ = 0.79 + 0.11 - 0.1 + 0.16 - 0.12 pb (data) NNLO QCD and NLO EW (theory)	LHC pp √s = 13 TeV	/	ġ.				139	ATLAS-CONF-2021-014
	$\sigma = 0.51 + 0.17 - 0.15 + 0.13 - 0.08 \ {\rm pb} \ {\rm (data)} \\ {\rm LHC-HXSWG} \ {\rm (theory)}$	Data		A				20.3	PRD 92, 012006 (2015)
	$\sigma = \begin{array}{c} 65.2 \pm 4.5 \pm 5.6 \text{ fb (data)} \\ \text{LHC-HXSWG (theory)} \end{array}$	SIAI stat⊕ svet		0				139	ATLAS-CONF-2019-029
− H (→γγ) jj VBF	σ = 42.5 ± 9.8 + 3.1 - 3 fb (data) LHC-HXSWG (theory)			A	1			20.3	ATLAS-CONF-2015-060
	$ \sigma = \begin{array}{c} 49 \pm 17 \pm 6 \text{ fb (data)} \\ \text{LHC-HXSWG (theory)} \end{array} $	LHC pp $\sqrt{s} = 8$ leV			•			4.5	ATLAS-CONF-2015-060
Wjj EWK $(M(jj) > 1 \text{ TeV})$	σ = 43.5 ± 6 ± 9 fb (data) Powheg+Pythia8 NLO (theory)	▲ Data		A				20.2	EPJC 77 (2017) 474
-M(ii) > 500 GeV	$\sigma = \begin{array}{c} 159 \pm 10 \pm 26 \text{ fb} \text{ (data)} \\ \text{Powheg+Pythia8 NLO (theory)} \end{array}$	stat ⊕ svst						20.2	EPJC 77 (2017) 474
···(n) > 300 GeV	$\sigma = 144 \pm 23 \pm 26$ fb (data) Powheg+Pythia8 NLO (theory)			0				4.7	EPJC 77 (2017) 474
7ii FWK	$\sigma = 37.4 \pm 3.5 \pm 5.5$ fb (data) Herwig7+VBFNLO (theory)	LITU pp $v_s = 7$ leV						139	EPJC 81 (2021) 163
-n	$\sigma = 10.7 \pm 0.9 \pm 1.9$ fb (data) PowhegBox (NLO) (theory)	Data						20.3	JHEP 04, 031 (2014)
Ζ γii EWK	$\sigma = 4.49 \pm 0.4 \pm 0.42$ fb (data) Madgraph5 + aMCNLO (theory)	stat ⊕ svst						139	ATLAS-CONF-2021-038
	$\sigma = 1.1 \pm 0.5 \pm 0.4 \text{ fb} \text{ (data)}$ VBFNLO (theory)			A				20.3	JHEP 07 (2017) 107
$\gamma\gamma \rightarrow WW$	σ = 5.15 ± 0.31 ± 0.28 tb (data) MG5_aMCNLO+Pythia8 × Surv. Fact (0.82)	(theory)						139	PLB 816 (2021) 136190
	$\sigma = 0.9 \pm 2.2 \pm 1.4 \text{ Ib (data)}$ HERWIG++ (theory)							20.2	PRD 94 (2016) 032011
(VVV+ZV)jj EWK	or = 45.1 ± 8.0 + 15.9 - 14.0 ID (data) Madgraph5 + aMCNLO + Pythia8 (theory)							35.5	PRD 100, 032007 (2019)
W [±] W [±] ii EWK	$\sigma = 2.09 \pm 0.01 - 0.48 \pm 0.29 - 0.28$ fb (data) PowhegBox (theory) $\sigma = 1.5 \pm 0.5 \pm 0.2$ fb (data)							36.1	PRL 123, 161801 (2019)
u	$\begin{array}{c} 5 = 1.5 \pm 0.5 \pm 0.2 \text{ is (data)} \\ \text{PowhegBox (theory)} \\ \sigma = 0.57 \pm 0.14 \pm 0.07 \pm 0.07 \pm 0.05 \text{ fb} (data) \end{array}$					-		20.3	PRD 96, 012007 (2017)
WZjj EWK	$\sigma = 0.29 \pm 0.14 \pm 0.13 \pm 0.07 \pm 0.05$ ib (data) Sherpa 2.2.2 (theory) $\sigma = 0.29 \pm 0.14 \pm 0.12 \pm 0.00$							36.1	PLB /93 92019) 469
77:: E\A//	$\sigma = 0.82 \pm 0.14 \pm 0.14 \pm 0.09 \pm 0.11 \text{ (data)}$ WBFNLO (theory) $\sigma = 0.82 \pm 0.18 \pm 0.11 \text{ (fb (data))}$				4	2		20.3	PRD 93, 092004 (2016)
	Sherpa 2.2.2 (theory)							139	arXiv:2004.10612 [hep-ex
			0 5	10 15	2.0	<u></u>	20	2 5	
		0.0	0.5 .	1.U 1.5	∠.0	2.5	3.0	3.3	
					da	ata/th	heor	'Y	
					5.1				

$Z\gamma\gamma$ Analysis – FSR Rejection

 ℓ^+

$Z\gamma\gamma$ Analysis – FSR Rejection

FSR: loss of lepton energy

FSR: second, broad peak below m_Z

Photon Identification

Photon Identification

- Define fake-enriched CR using dedicated identification
 - ⇒ Select electromagnetic component (genuine non-prompt photon)
 - pass e.g. R_{had}: energy ratio between HCAL-ECAL
 - ⇒ Select hadronic component (jet remnant)
 - *fail* e.g. w_{s3} : lateral shower width

Photon Isolation

2D Template Fit - Introduction

Isolation energy E_T^{cone20}

- Observable in 2D Template Fit
- Derive templates, probability density, for E_T^{cone20}
 - \Rightarrow Prompt photons: $Z\gamma\gamma$ signal
 - \Rightarrow Fake photons: $Z\gamma j$, $Zj\gamma$, Zjj backgrounds
- Fit templates to observed isolation energy in data
 - \Rightarrow Fix shape of templates, determine normalization for each process

 $\Rightarrow E_T^{\rm cone20}/p_T < 0.065$

2D Template Fit - Templates

Template Extraction

- 2D: leading/subleading photon templates
- Extracted in MC simulation or fake-enriched data CRs
 - ⇒ Gaussian core + power-law/exp tails
 - ⇒ Superposition of Gaussian kernels

30.05.2022

2D Template Fit - Templates

Template Extraction

- 2D: leading/subleading photon templates
- Extracted in MC simulation or fake-enriched data CRs
 - ⇒ Gaussian core + power-law/exp tails
 - ⇒ Superposition of Gaussian kernels

2D Template Fit - Results

Final 2D Fit

- Shape of templates fixed
- Sum of templates fitted to observed 2D isolation energy in Run-2

Final 2D Fit

- Shape of templates fixed
- Sum of templates fitted to observed 2D isolation energy in Run-2

	2D Template
$Z\gamma\gamma$ SR yield	249.5±21.0 (stat.)±19.1 (sys.)
Zγj SR yield	21.5±9.5 (stat.)±11.0 (sys.)
$Zj\gamma$ SR yield	0.0±7.8 (stat.)±11.2 (sys.)
Zjj SR yield	5.5±2.5 (stat.)±2.7 (sys.)
Total fakes	27.0±11.0 (stat.)±15.9 (sys.)

30.05.2022