HPC serving High Energy and Medical Physics

Othmane Bouhali

Texas A&M University at Qatar TAMUQ Advanced Scientific Computing center Medical and High Energy Physics group Othmane.bouhali@qatar.tamu.edu

HPC Workshop, 23 May 2022 Sharjah, UAE

5/23/2022

1

- Research Computing at Texas A&M University at Qatar
- HPC case studies: for HEP and MedPhys
- Remarks and summary

High Performance Computing is the **aggregation of computing** elements to deliver **much higher performance** computing power

→ Solve problems that cannot be handled by commodity computers or desktops

Research Computing group formed in 2008

Mission: Foster scientific research by providing researchers With advanced resources in terms of computational power, Storage capability, visualization tools and scientific software

High Performance Computing
 Scientific computing support

> 3D Visualization

Collaborative research projects

Programming support/Training

Linux/HPC support/Training

Sustained HPC Infrastructure

130 million CPU hours

- Linux
- Scripting and programming (shell, python, C/C++...)
- Usage of HPC (batch software...)
- User interface for novice users
- Parallel programming
- Scientific programming
- GPU programming (e.g. CUDA)
- Python for Al
- Containers in HPC clusters

- Capstone project for undergraduates
- Helping Master and PhD students in their computational work
- Bringing new users to the HPC (user engagement)
- Attracting talents

200+ publications/proc. used the HPC in 2020 and 2021 only

HPC: Not only a machine: it's an ecosystem

Manpower	Hardware	Security	Software/ap plication	Governance	Logistic
 Administrati on, Daily support Planning executing training Docs 	 replacing old equipment, expanding existing one, emerging technologies 	 Data security and retention Long and short term backup 	 licensing porting, compiling, optimizing Common repositories application requirement 	 Policies Roadmap update Implement and enforce policies 	 Networking Data center issues

Consolidating the <u>High Performance</u> Computing Ecosystem to Prepare Qatar for Peta & Exa-scale Computing in the Data Intensive Era

Updated roadmap for the future \rightarrow

Authors: Research Computing team at TAMUQ August 2018, Doha.

TASC: Advanced Scientific Computing Center

- We started the International Computational Science and Engineering Conference
- Three conferences alerady: ICSEC15, ICSEC17 and ICSEC19
- Selected papers published in the Journal of Computational Science
- Fourth (ICSEC23) will be launched soon

Particle/High Energy Physics:

- U What's?
- Study the elementary constituents of matter
- the interaction between them
- □ How?
- accelerate particles

- > make them collide with each other or with a fixed target
- detect and study the collision products

Evolution: Unification?

LHC: some parameters

Selection of 1 event in 10,000,000,000,000

CMS components and collaborators

CMS cross section

Major upgrade

	GE1/1	GE2/1	ME0
Number of GEM chambers	144 chambers (72 superchambers)	72	36
Chamber dimensions (cm)	Long modules: 22.5 base, 128.5 length Short modules: 22.5 base, 113.5 length	53.3 base, 183.3 length	23.6 base, 78.8 length
Total readout channels	442,368	442,368	663,552
Pseudorapidity (η) coverage	1.55 < η <2.20	1.62 <i><</i> η <i><</i> 2.43	$2.03 < \eta < 2.80$
Opening angle (degrees)	10	20	20
Status	Installation completed in Fall 2020	Design almost complete	Design and optimization in progress

1.5 M Electronic channels added to this area

Spatial resolution	300 μm
Time resolution	10 ns
Detection Efficiency	97%
Long-term operation	> 10 years LHC-HL
Uniform response	<15-20% gain variation across the full area

Extensive R&D through simulation

The Gas Electron Multiplier (GEM)

Involving students from mechanical engineering

O. Bouhali et al., NIMA 832 (2016)

e.g.: Garfield software used for Detector simulation

Involving students from electrical engineering

O. Bouhali Nucl. Instr. Meth 901 (2018)

Medical physics is a branch of Applied Physics

→ prevention, diagnosis and treatment of disease using physics principles and methods

Subfields of Medical Physics include:

- Radiation Oncology
- Medical Imaging
- Nuclear Medicine
- Radiation Protection (Health Physics)

...

Medical Imaging techniques

Examples are:

• X-ray

• Fluoroscopy, Ultrasound

• Computed Tomography (CT)

MRI

• PET (Positron Emission Tomography)

Medical physics: treatment techniques

- Radiation therapy
 - Conventional photon therapy
 - Proton Therapy
 - Ion Beam Therapy
- Radionuclide Therapy
- Theranostics

5/23/2022

Principle of Positron Emission Tomography

LOR: line connecting two detecting blocks Total number of coincidences in each LOR is proportional to the radiotracer distribution

Modeling: PET imaging

Electron-Positron annihilation $e^- + e^+ \rightarrow \gamma + \gamma$

Applications:

- Cardiac imaging
- Neuroimaging
- Oncology

Block of scintillation crystals

- Gamma ray detection system
 - Scintillation Crystal (efficiency, low noise, fast response)
 - Photo Multiplier (electric signal generation)
- Data Acquisition (fast acquisition, low latency)
- Image reconstruction (efficient and fast algorithm)
- Mechanical and electronic design

→ This requires extensive modeling and AI based optimization

Full simulation chain

Modeling the PET system Geometry

- ✓ Nature and number of crystals
- ✓ Shapes and dimensions
- ✓ Geometry of the Phantom
- Geometry of the Radioactive Source

Setting the simulation Parameters

- Lowenergy models for Compton and Rayleigh
- ✓ Energy cuts: delta-ray 10 keV, X-rays 10 keV,
- ✓ Electron range cut 2 mm

Deadtime/ Energy **Readout**/ Energy Efficiency block window block resolution Singles **Geant4 Hits Pulses** 300/650keV 5000 ns 88% 20%/30% **Paralysable** @ 511keV Deadtime Coincidences **Final Coincidences** 500 ns **Paralysable**

Setting the Source Activity and the Acquisition Time

Setting the Signal processor chain

Simulation & Validation of clinical and micro-PET

R.S. Augusto et al., Physica Medica, 54(2018)189-199

Simulation & Validation of clinical and micro-PET

PET Scanner		Allegro		HR+		mCT		TF		
Performance Parameter		Exp.	Sim.	Exp.	Sim.	Exp.	Sim.	Exp.	Sim.	
Spatial Resolutio n	Trans @1 cm		5.43	4.79	4,39	3.87	4.4	4.21	4.84	4.73
	Axial @1 cm		5.56	4.6	5.1	4.41	4.4	4.3	4.73	4.69
	Tang @	210 cm	5.48	4.57	4,64	4.01	4.7	4.57	5.2	5.12
	Radial	@10 cm,	5.70	4.86	5,65	4.7	5.2	4.95	5.2	5.08
Scatter Fraction (%)		42	42.2	48	44.3	33.2	30.5	30	31.5	
Sensitivity R=0 cm		4360	4790	6650	6877	4360	4790	7390	7640	
(cps/MBq) R=10 cm		4650	4850	7180	7235	4650	4850	7280	7564	

R.S. Augusto et al., Physica Medica, 54(2018)189-199

Total Body PET (TBPET)

M. Abi Akl et al., ENAM 2017
M. Abi Akl, Middle East Medical Physics Conference (2nd best presentation)
M. Abi Akl et al., IEEE MIC 2019
O. Bouhali et al., FTMI, 2022

New device for Nuclear Medicine

In nuclear medicine:

- Measuring the Blood Time Activity (BTAC) curve
 - Arterial blood sampling involves blood extractio
 - Uncomfortable for patients
- ightarrow Non-invasive arterial blood radioactivity device
- ightarrow Device can be placed around the wrist
- \rightarrow Complete simulation

Non-invasive arterial blood radioactivity device

Y. Toufique, O. Bouhali, J. O'Doherty, Eur. J. Nucl. Moel. Med. (2020) 7:25

US Patent: PCT/QA2020/050007

5/23/2022

Results from dose profiles

O. Bouhali et al., Computing in Biology and Medicine Conference, , London, 2019 M. Bendahman et al., under review, Oncology and radiology J.

Complete model of CT scan (SIDRA)

The weighted computed tomography dose index CTDI_{W}

$$CTDI_{w} = \frac{1}{3}CTDI_{c} + \frac{2}{3}(CTDI_{12} + CTDI_{3} + CTDI_{6} + CTDI_{9})$$

Detector

Results: SOMATRON X-ray Tube

Comparison between simulated and measured data(SpeckCal)

5/23/2022

Texas A&M at Qata

CT model: simulation versus experimental

O. Bouhali et al., European Congress of Radiology, Vienna, March 2019

O. Bouhali et al., ECR, 2020

CTDI(mGy)

kVp

lexas A&M at Qatai

High Performance Computing:

→Is an ecosystem: **people**, **Infrastructure**, **Policies**, **Software**

→ Critical for research excellence and efficient capacity building

Better HPC systems \rightarrow better business value