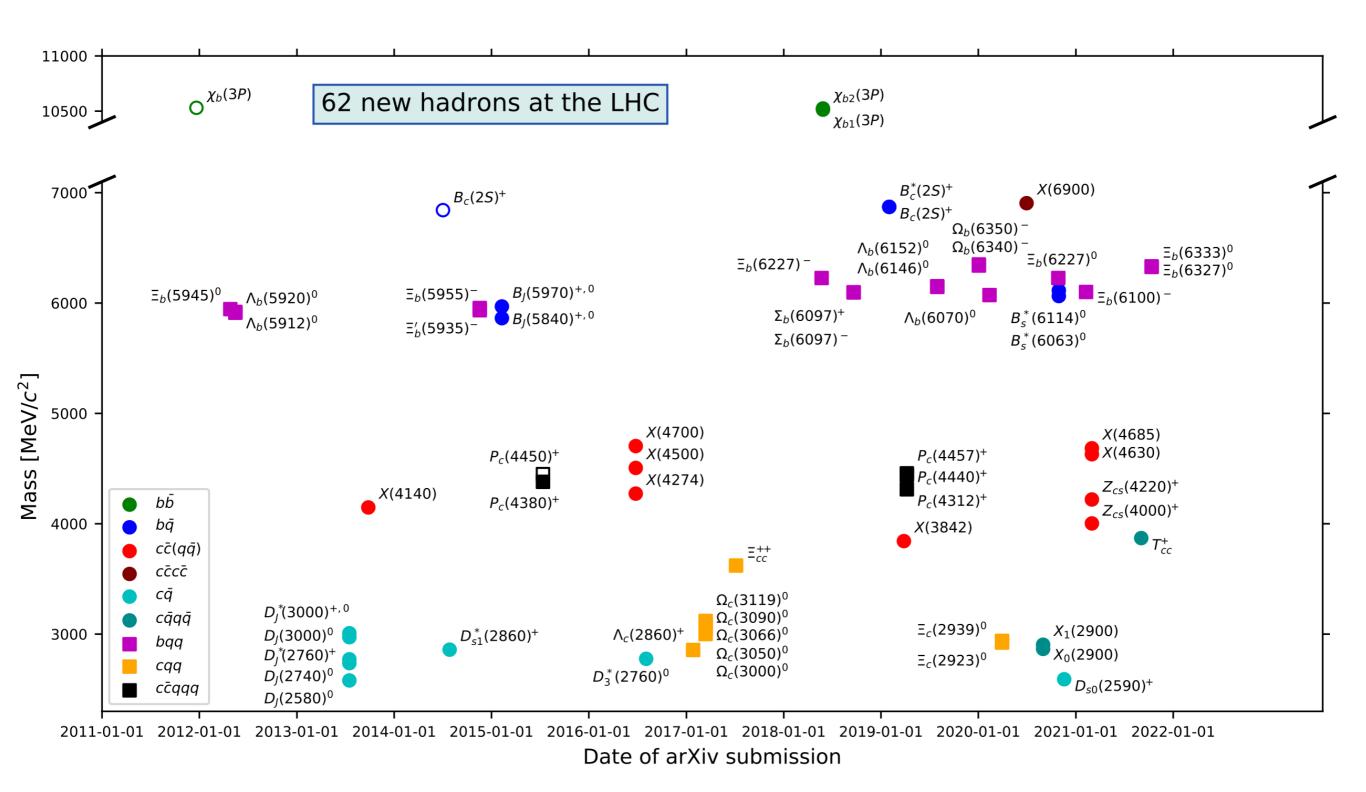
Dispersive analysis of the $\gamma\gamma \to D\bar{D}$ data

Igor Danilkin

in coll. with Oleksandra Deineka, Marc Vanderhaeghen

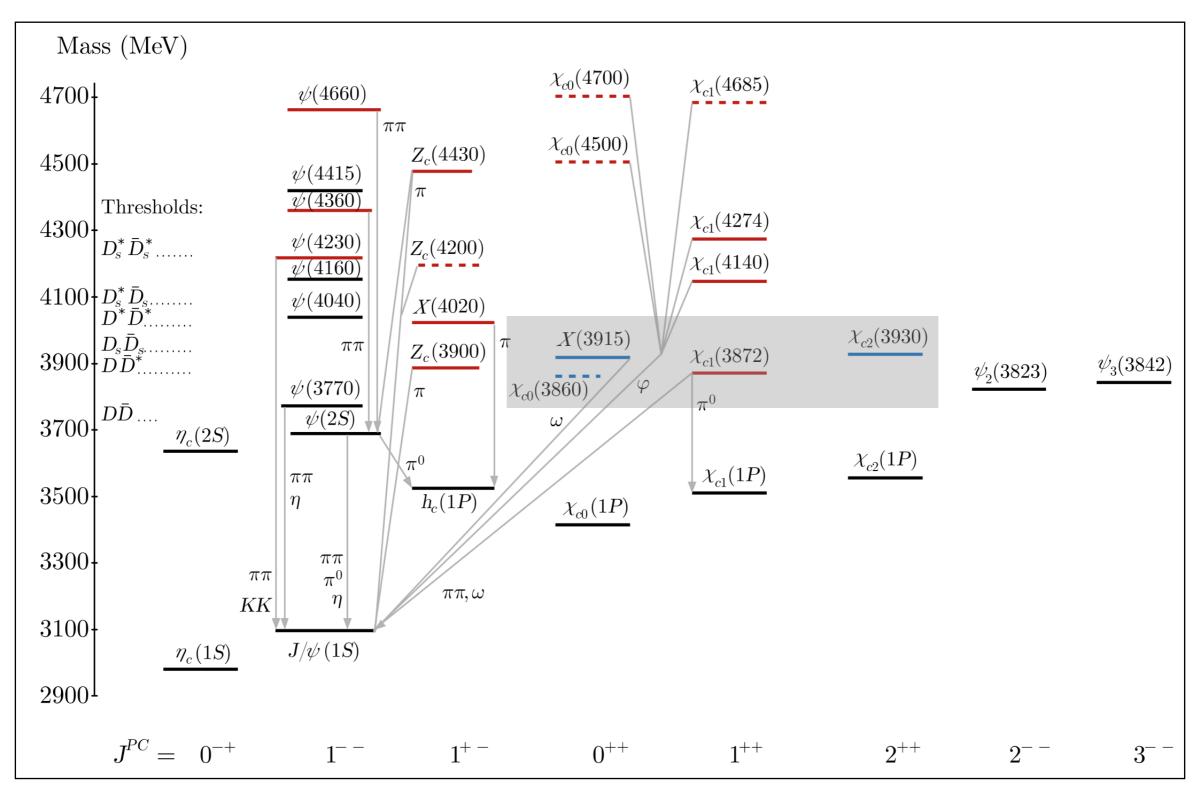
Phys. Lett. B 827, 136982 (2022)

EXCITED QCD 2022, October 28, Sicily



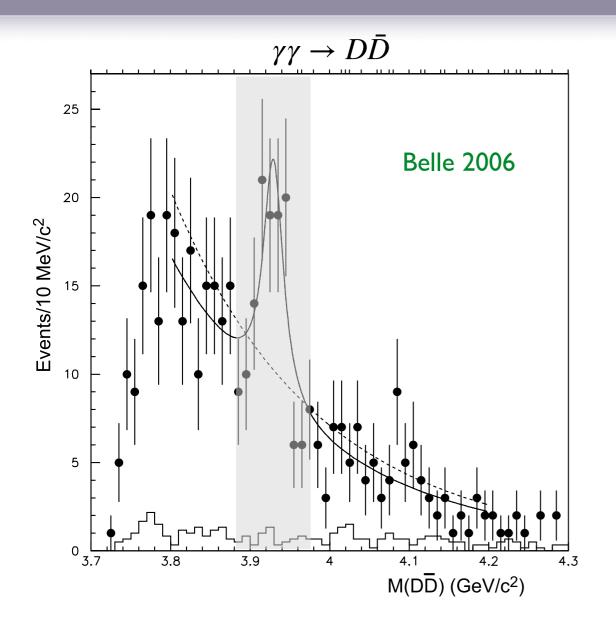
+ data from Babar, Belle, COMPASS, ...

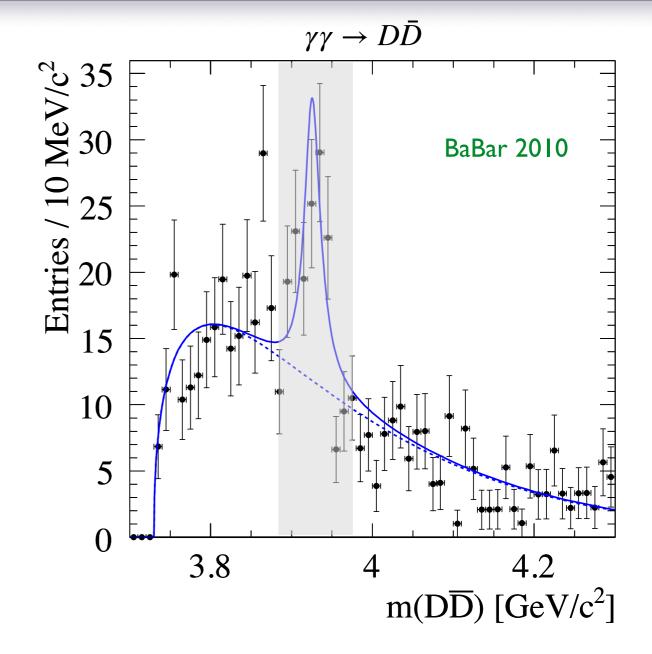
What are we looking for?



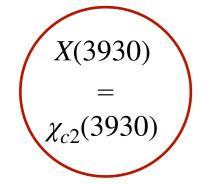
PDG 2021

Everything is fine with $\chi_{c2}(2P)$



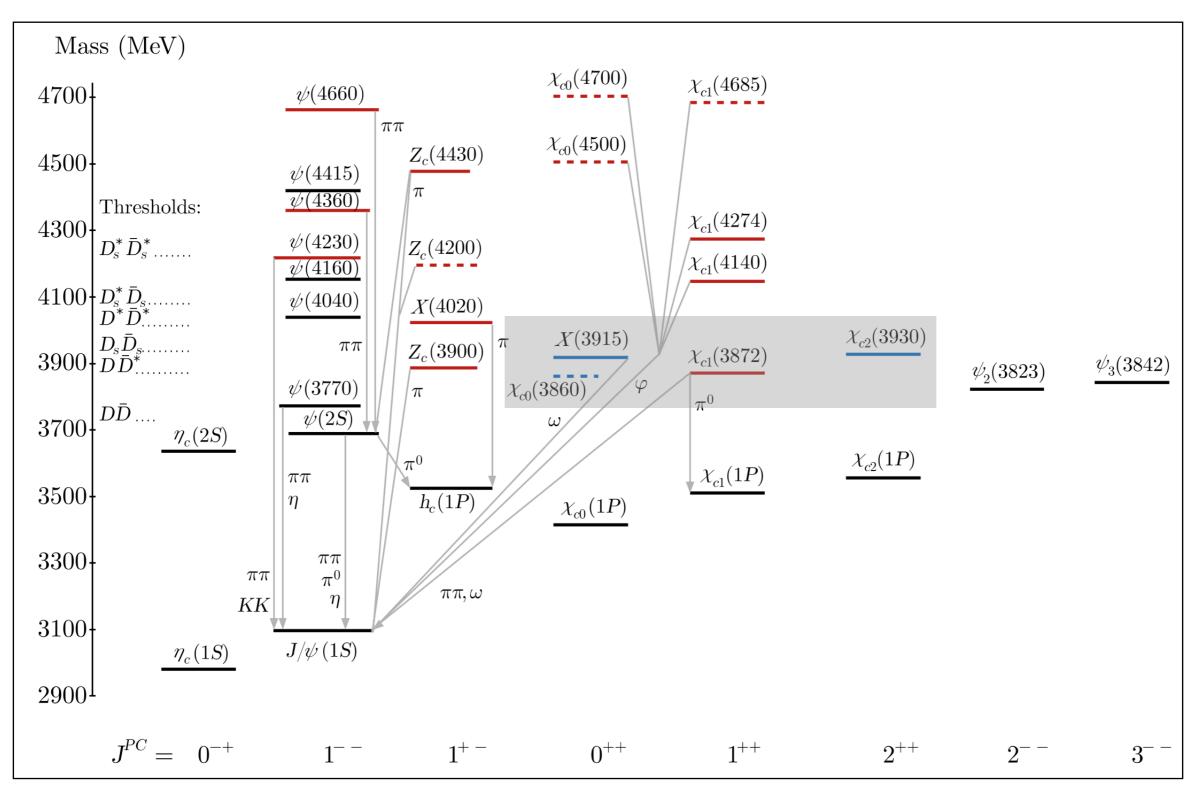


LHCb, 2019: $pp \rightarrow D\bar{D}$ + anything LHCb, 2020: $B^+ \rightarrow D^+D^-K^+$



$\chi_{c2}(3930)$	$I^G(J^{PC})$ = $0^+(2^{++})$	PDG 2022
$\chi_{c2}(3930)$ MASS		3922.5 ± 1.0 MeV (S = 1.7)
$\chi_{c2}(3930)$ WIDTH		35.2 ± 2.2 MeV (S = 1.2)

What are we looking for?



is X(3915) a $\chi_{c0}(2P)$?

[Belle 2005]
$$B \rightarrow J/\psi \omega K$$
: $X(3915)$: later confirmed by [BaBar 2008, 2010]

[Belle 2010]
$$\gamma\gamma \to X(3915) \to J/\psi\omega$$

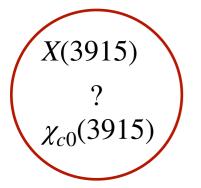
[BaBar 2012] spin-parity analysis : $J^{PC} = 0^{++}$
(assuming helicity-2 dominance of tensor resonance)

Problems: [Brambilla et al. 2011, Olsen 2015, ...]

- No decay mode to DD (S-wave) was observed
- The $X(3915) \rightarrow J/\psi\omega$ decay should be OZI suppressed
- Narrow, width of ~20 MeV
- Small mass splitting with $\chi_{c2}(3930)$
- Might actually be the same state as $\chi_{c2}(3930)$ [Zhou et al. 2015]

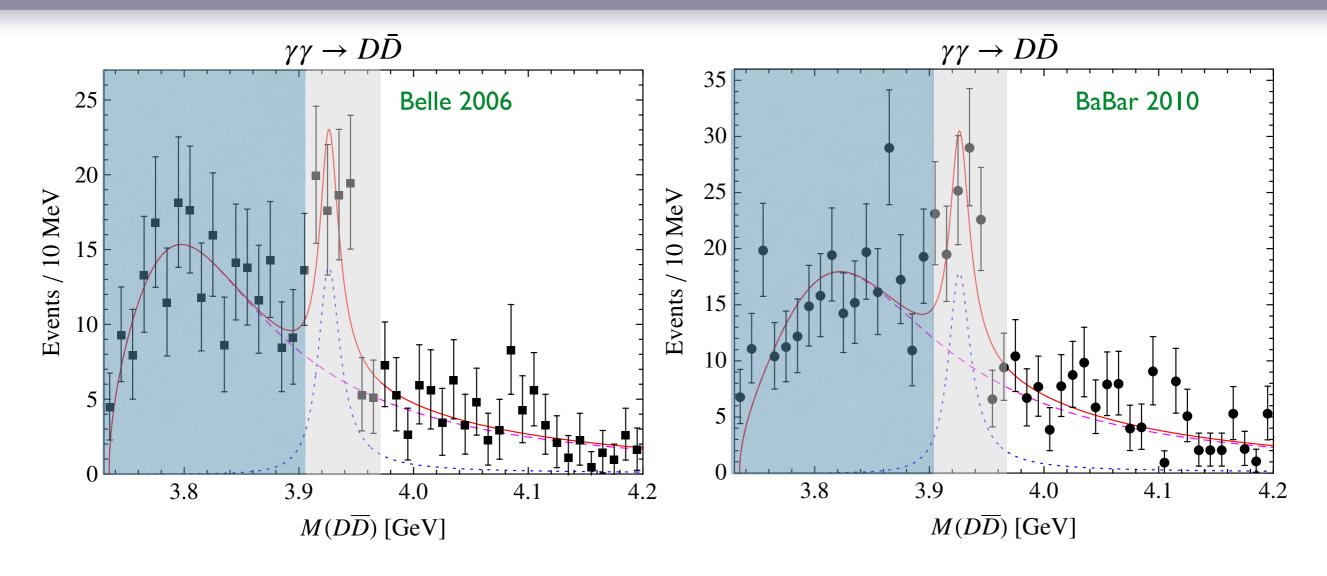
[LHCb 2021]
$$B^+ \to D^+ D^- K^+$$

found narrow $J^{PC} = 0^{++}$ resonance around ~3.92 GeV
(amplitude analysis)

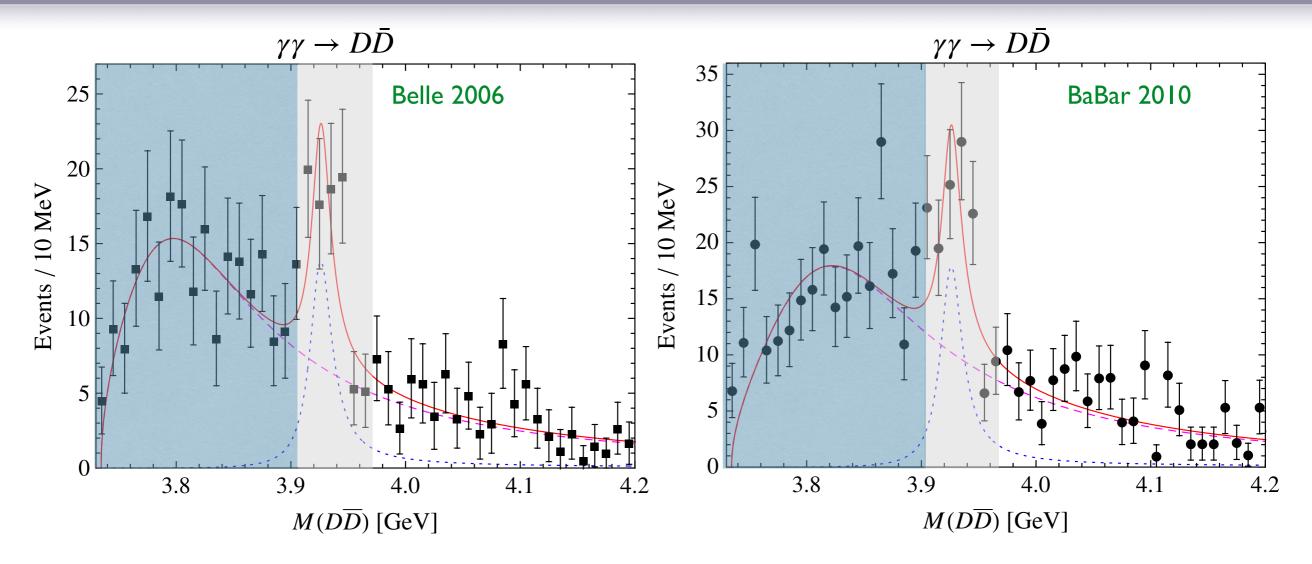


$\chi_{c0}(3915)$	$I^G(J^{PC}) = 0^+(0^{++})$	PDG 2022
$\chi_{c0}(3915)$ MASS		$3921.7\pm1.8~\text{MeV}$
$\chi_{c0}(3915)$ WIDTH		$18.8 \pm 3.5~ ext{MeV}$

Another possibility for $\chi_{c0}(2P)$?



Another possibility for $\chi_{c0}(2P)$?

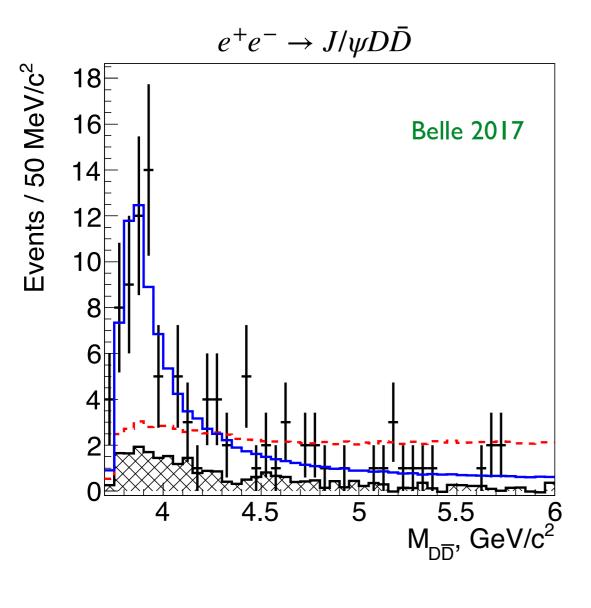


[Guo Meißner 2010]

two Breit-Wigner functions: mass and width of $\chi_{c2}(3930)$ is fixed, and $\chi_{c0}(2P)$ is fitted

$$B_L(s) = \left(\frac{p(s)}{p(m_R^2)}\right)^{2L+1} \frac{m_R}{\sqrt{s}} \frac{F_L^2(s)}{(s - m_R^2)^2 + m_R^2 \Gamma^2(s)}, \quad \Gamma(s) = \Gamma_R \left(\frac{p(s)}{p(m_R^2)}\right)^{2L+1} \frac{m_R}{\sqrt{s}} F_L^2(s)$$

$$M_{\chi_{c0}(2P)} = 3837.6 \pm 11.5 \,\text{MeV}, \quad \Gamma_{\chi_{c0}(2P)} = 221 \pm 19 \,\text{MeV}$$



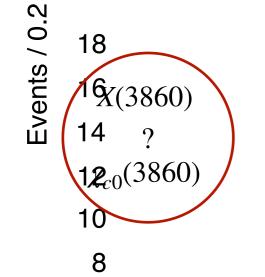
Problems:

- The $e^{\pm}_{8}e^{-} \rightarrow J/\psi D\bar{D}$ statistics is rather limited 16
- 16 LHCb₄2021 amplitude analysis of $B^+ \rightarrow D^+D^-K^+$ see no evidence for broad X(3860)

Events / 0.2

 $3862^{+50}_{-35}~{
m MeV}$

2



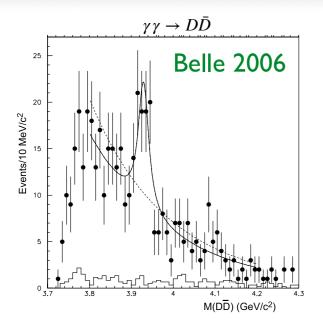
 $\chi_{c0}(3860)$ $I^{G}(J^{P})$

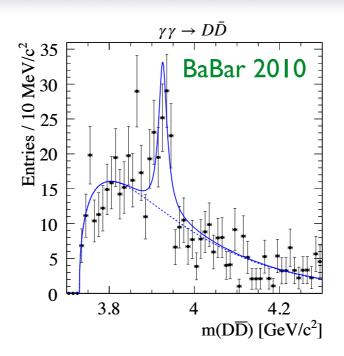
8

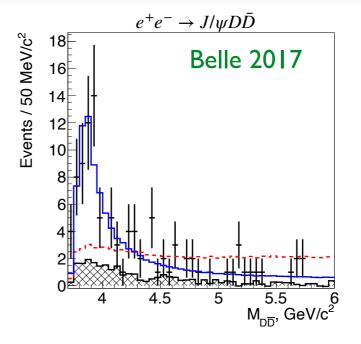
 $I^G(J^{PC}) = 0^+(0^{++})$ PDG 2022

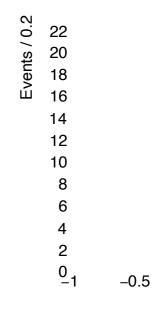
 $\chi_{c0}(3860)$ MASS

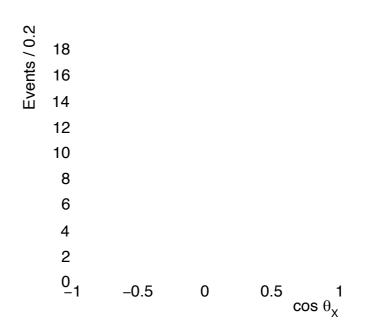
 $\chi_{c0}(3860)~ ext{WIDTH}$ $201^{+180}_{-110}~ ext{MeV}$

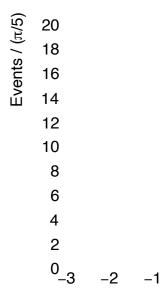


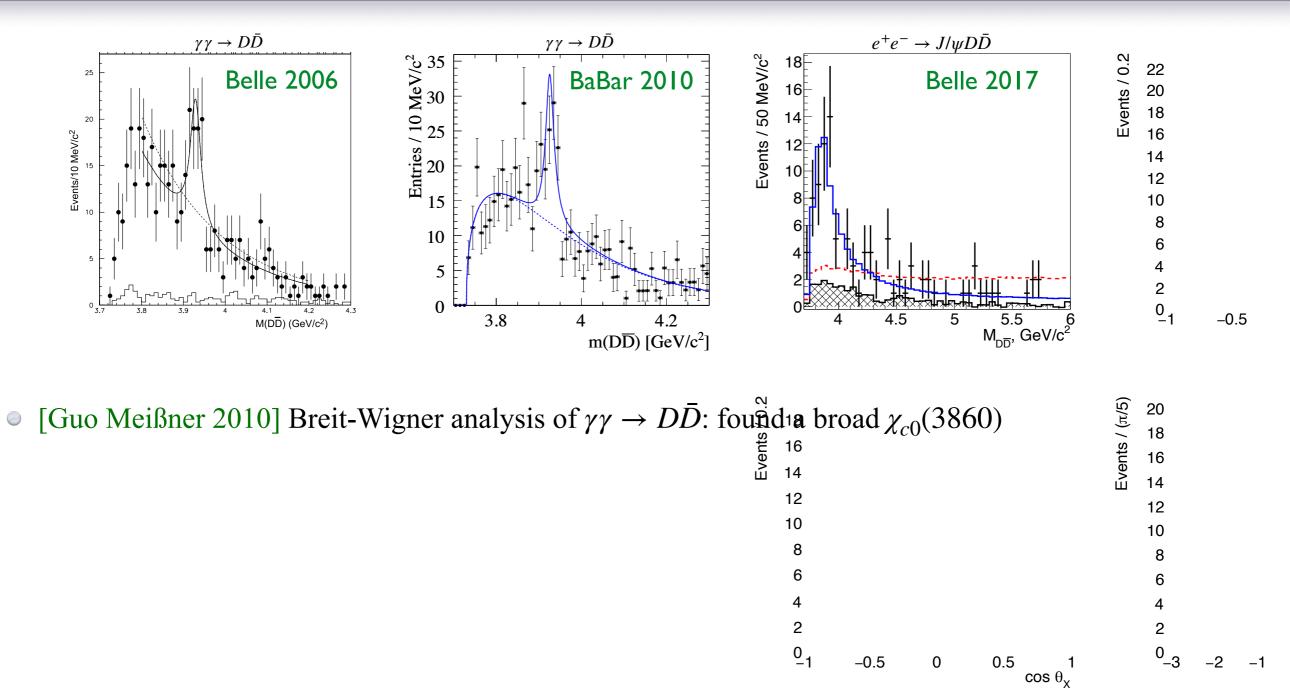


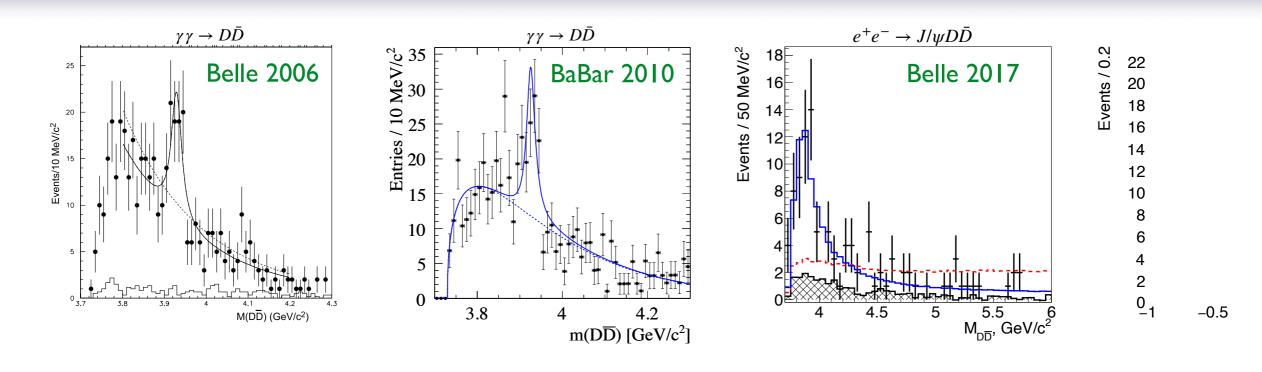








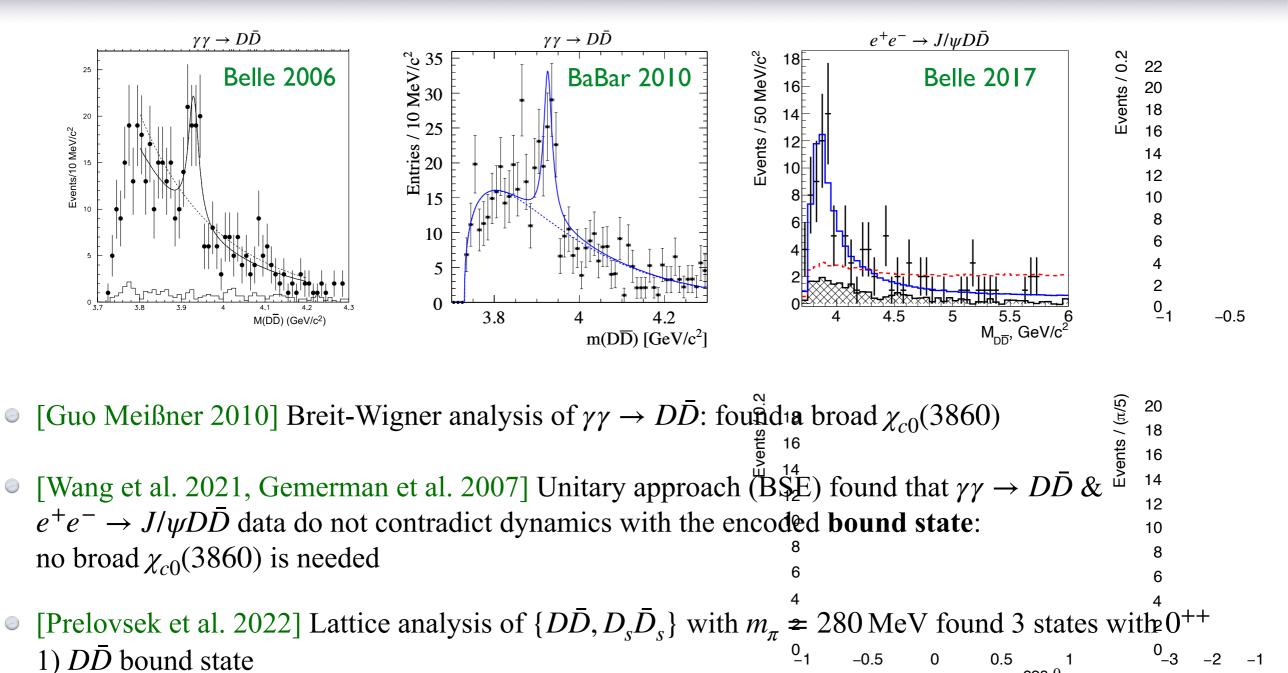




• [Guo Meißner 2010] Breit-Wigner analysis of $\gamma \gamma \to D\bar{D}$: found χ_{c0} broad χ_{c0} (3860)

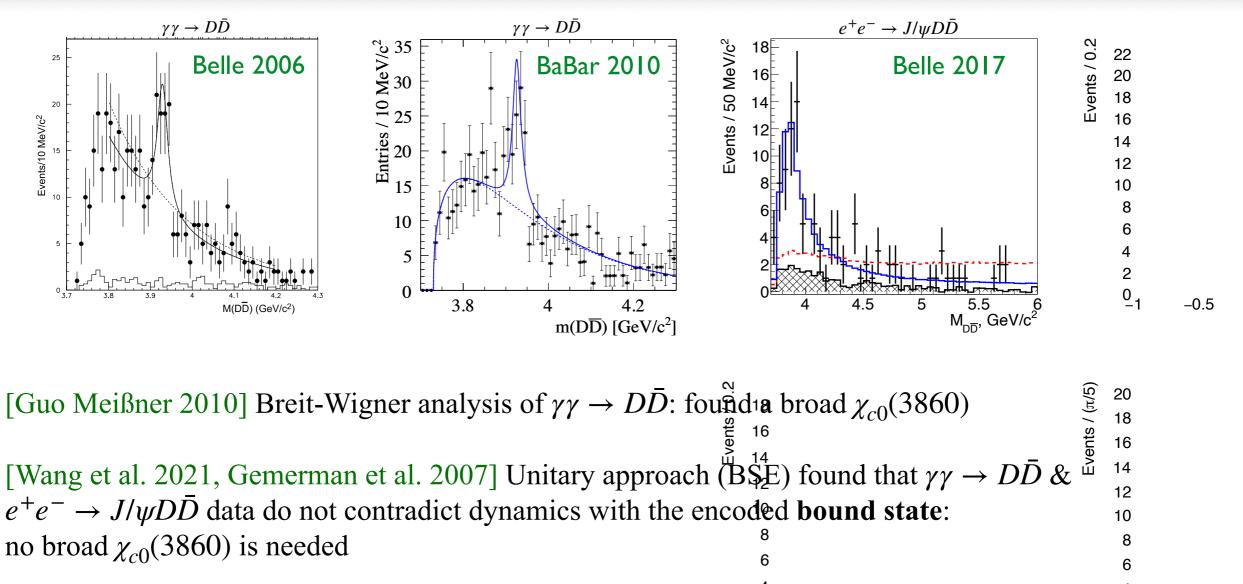
■ [Wang et al. 2021, Gemerman et al. 2007] Unitary approach (B\$\frac{1}{2}E\$) found that $\gamma\gamma \to D\bar{D}$ & $e^+e^- \to J/\psi D\bar{D}$ data do not contradict dynamics with the encoded **bound state**: no broad $\chi_{c0}(3860)$ is needed

8
6
4
2 $\frac{0}{1}$ -0.5
0
0.5 $\frac{1}{\cos \theta_{X}}$



 $\cos \theta_{\rm v}$

- 2) broad state likely related to $\chi_{c0}(3860)$
- 3) $D_s \bar{D}_s$ quasi bound state which might be $\chi_{c0}(3915)$ or X(3960)



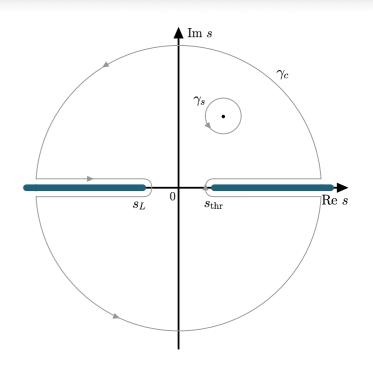
- Prelovsek et al. 2022] Lattice analysis of $\{D\bar{D}, D_s\bar{D}_s\}$ with $m_{\pi} \stackrel{4}{=} 280 \,\text{MeV}$ found 3 states with 0^{++} 1) $D\bar{D}$ bound state
 - 2) broad state likely related to $\chi_{c0}(3860)$
 - 3) $D_s \bar{D}_s$ quasi bound state which might be $\chi_{c0}(3915)$ or X(3960)

In order to figure out what is going on with 0^{++} we employ a data driven dispersive analysis of $\gamma\gamma \to D\bar{D}$ and $e^+e^- \to J/\psi D\bar{D}$

Formalism

• Full **p.w. dispersion relation** (causality, crossing, unitarity)

$$t_{ab}(s) = \int_{-\infty}^{s_L} \frac{ds'}{\pi} \frac{\text{Im } t_{ab}(s')}{s' - s} + \int_{s_{th}}^{\infty} \frac{ds'}{\pi} \frac{\text{Im } t_{ab}(s')}{s' - s}$$



Unitarity relation

$$\operatorname{Im} t_{ab}(s) = \sum_{c} t_{ac}(s) \rho_{c}(s) t_{cb}^{*}(s)$$

$$-\frac{1}{2\rho_{1}} \leq \operatorname{Re} t_{11}(s) \leq \frac{1}{2\rho_{1}}, \quad 0 < \operatorname{Im} t_{11}(s) \leq \frac{1}{\rho_{1}}, \quad \dots$$

• Assuming $t(\infty) \to const$ we subtract the dispersion relation once

$$t_{ab}(s) = t_{ab}(0) + \frac{s}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'} \frac{\text{Im } t_{ab}(s')}{s' - s} + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{t_{ac}(s') \rho_c(s') t_{cb}^*(s')}{s' - s}$$

$$U_{ab}(s) \qquad \text{(asymptotically bounded unknown function)}$$

Once-subtracted p.w. dispersion relation

$$t_{ab}(s) = t_{ab}(0) + \frac{s}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'} \frac{\text{Im } t_{ab}(s')}{s' - s} + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{t_{ac}(s') \rho_c(s') t_{cb}^*(s')}{s' - s}$$

$$U_{ab}(s)$$

Once-subtracted p.w. dispersion relation

$$t_{ab}(s) = t_{ab}(0) + \frac{s}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'} \frac{\text{Im } t_{ab}(s')}{s' - s} + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{t_{ac}(s') \rho_c(s') t_{cb}^*(s')}{s' - s}$$

$$U_{ab}(s)$$

can be solved using N/D method with input from $U_{ab}(s)$ above threshold

Chew, Mandelstam (1960) **Luming** (1964) Johnson, Warnock (1981)

$$t_{ab}(s) = \sum_{c} D_{ac}^{-1} N_{cb}(s)$$

$$t_{ab}(s) = \sum_{c} D_{ac}^{-1} N_{cb}(s)$$

$$N_{ab}(s) = U_{ab}(s) + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ac}(s') \rho_c(s') (U_{cb}(s') - U_{cb}(s))}{s' - s}$$

$$D_{ab}(s) = \delta_{ab} - \frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ab}(s') \rho_b(s')}{s' - s}$$

the obtained N/D solution can be checked that it fulfils the p.w. dispersion relation

Once-subtracted p.w. dispersion relation

$$t_{ab}(s) = t_{ab}(0) + \frac{s}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'} \frac{\text{Im } t_{ab}(s')}{s' - s} + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{t_{ac}(s') \rho_c(s') t_{cb}^*(s')}{s' - s}$$

$$U_{ab}(s)$$

can be solved using N/D method with input from $U_{ab}(s)$ above threshold

Chew, Mandelstam (1960) Luming (1964) Johnson, Warnock (1981)

$$t_{ab}(s) = \sum_{c} D_{ac}^{-1} N_{cb}(s)$$

$$t_{ab}(s) = \sum_{c} D_{ac}^{-1} N_{cb}(s)$$

$$N_{ab}(s) = U_{ab}(s) + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ac}(s') \rho_c(s') (U_{cb}(s') - U_{cb}(s))}{s' - s}$$

$$D_{ab}(s) = \delta_{ab} - \frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ab}(s') \rho_b(s')}{s' - s}$$

the obtained N/D solution can be checked that it **fulfils** the p.w. dispersion relation

Bound state case

$$\det(D_{ab}(s_B)) = 0$$

$$t_{ab}(s) = U_{ab}(s) + \frac{s}{s_B} \frac{g_a g_b}{s_B - s} + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{t_{ac}(s') \rho_c(s') t_{cb}^*(s')}{s' - s}$$

• I = 0 has $\{\gamma\gamma, \pi\pi, K\bar{K}, \dots, D\bar{D}\}$ channels, but the coupling of charmed $\{D\bar{D}\}$ with uncharmed $\{\pi\pi, K\bar{K}, \dots\}$ are strongly suppressed: separately focus on $\{\gamma\gamma, D\bar{D}\}$ and $\{\gamma\gamma, \pi\pi, K\bar{K}\}$

- I=0 has $\{\gamma\gamma,\pi\pi,K\bar{K},\ldots,D\bar{D}\}$ channels, but the coupling of charmed $\{D\bar{D}\}$ with uncharmed $\{\pi\pi,K\bar{K},\ldots\}$ are strongly suppressed: separately focus on $\{\gamma\gamma,D\bar{D}\}$ and $\{\gamma\gamma,\pi\pi,K\bar{K}\}$
- Neglect $\gamma\gamma$ intermediate states in the unitary relation and put $U_{\gamma\gamma\to\gamma\gamma}=0~(\sim e^4)$ => coupled-channel $\{\gamma\gamma,D\bar{D}\}$ equations reduce to the **hadronic part** and **photon-fusion part**

$$t_{DD}(s) = U_{DD}(s) + \frac{s}{\pi} \int_{4m_D^2}^{\infty} \frac{ds'}{s'} \frac{t_{DD}(s') \rho_D(s') t_{DD}^*(s')}{s' - s} = \frac{N_{DD}(s)}{D_{DD}(s)}$$

$$t_{\gamma\gamma,DD}(s) = U_{\gamma\gamma,DD}(s) + D_{DD}^{-1}(s) \left(-\frac{s}{\pi} \int_{4m_D^2}^{\infty} \frac{ds'}{s'} \frac{\text{Im } D_{DD}(s') U_{\gamma\gamma,DD}(s')}{s' - s} \right)$$

- I=0 has $\{\gamma\gamma,\pi\pi,K\bar{K},\ldots,D\bar{D}\}$ channels, but the coupling of charmed $\{D\bar{D}\}$ with uncharmed $\{\pi\pi,K\bar{K},\ldots\}$ are strongly suppressed: separately focus on $\{\gamma\gamma,D\bar{D}\}$ and $\{\gamma\gamma,\pi\pi,K\bar{K}\}$
- Neglect $\gamma\gamma$ intermediate states in the unitary relation and put $U_{\gamma\gamma\to\gamma\gamma}=0~(\sim e^4)$ => coupled-channel $\{\gamma\gamma,D\bar{D}\}$ equations reduce to the **hadronic part** and **photon-fusion part**

$$t_{DD}(s) = U_{DD}(s) + \frac{s}{\pi} \int_{4m_D^2}^{\infty} \frac{ds'}{s'} \frac{t_{DD}(s') \rho_D(s') t_{DD}^*(s')}{s' - s} = \frac{N_{DD}(s)}{D_{DD}(s)}$$

$$t_{\gamma\gamma,DD}(s) = U_{\gamma\gamma,DD}(s) + D_{DD}^{-1}(s) \left(-\frac{s}{\pi} \int_{4m_D^2}^{\infty} \frac{ds'}{s'} \frac{\text{Im } D_{DD}(s') U_{\gamma\gamma,DD}(s')}{s' - s} \right)$$

• Using the known analytical structure of **left-hand cuts**, one can approximate $U_{ab}(s)$ as an expansion in a conformal mapping variable $\xi(s)$ Gasparyan, Lutz (2010)

$$U_{DD}(s) \simeq \sum_{n=0}^{\infty} C_n s^n(s)$$
 to be determined from the fits
$$s_{th} = s_{th}$$
 physical region
$$s_{th} = s_{th}$$

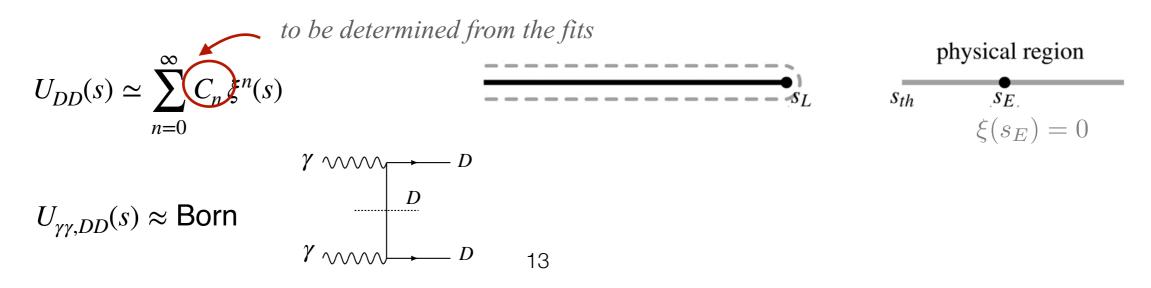
$$\xi(s_E) = 0$$

- I=0 has $\{\gamma\gamma,\pi\pi,K\bar{K},\ldots,D\bar{D}\}$ channels, but the coupling of charmed $\{D\bar{D}\}$ with uncharmed $\{\pi\pi,K\bar{K},\ldots\}$ are strongly suppressed: separately focus on $\{\gamma\gamma,D\bar{D}\}$ and $\{\gamma\gamma,\pi\pi,K\bar{K}\}$
- Neglect $\gamma\gamma$ intermediate states in the unitary relation and put $U_{\gamma\gamma\to\gamma\gamma}=0~(\sim e^4)$ => coupled-channel $\{\gamma\gamma,D\bar{D}\}$ equations reduce to the **hadronic part** and **photon-fusion part**

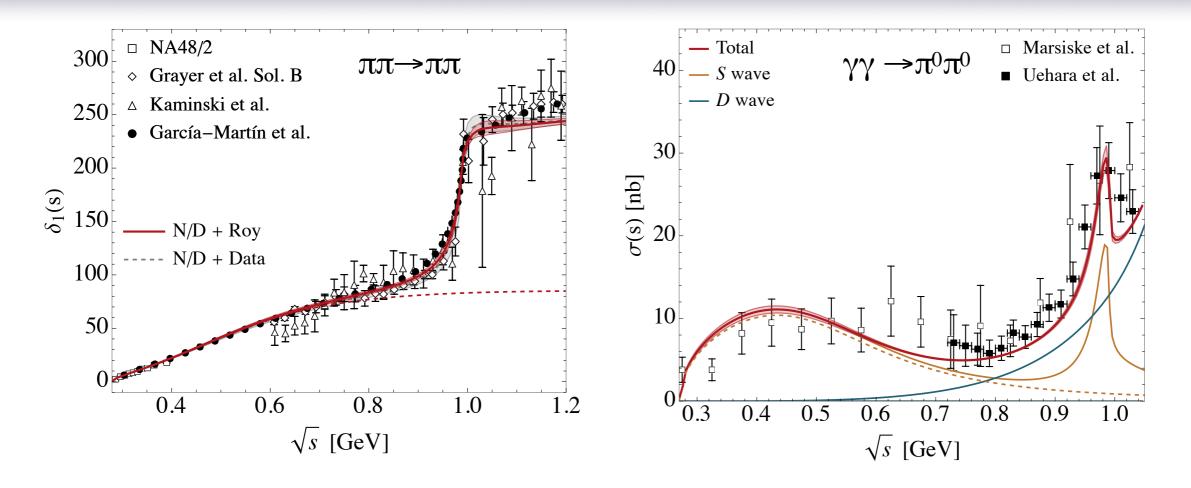
$$t_{DD}(s) = U_{DD}(s) + \frac{s}{\pi} \int_{4m_D^2}^{\infty} \frac{ds'}{s'} \frac{t_{DD}(s') \rho_D(s') t_{DD}^*(s')}{s' - s} = \frac{N_{DD}(s)}{D_{DD}(s)}$$

$$t_{\gamma\gamma,DD}(s) = U_{\gamma\gamma,DD}(s) + D_{DD}^{-1}(s) \left(-\frac{s}{\pi} \int_{4m_D^2}^{\infty} \frac{ds'}{s'} \frac{\text{Im } D_{DD}(s') U_{\gamma\gamma,DD}(s')}{s' - s} \right)$$

• Using the known analytical structure of **left-hand cuts**, one can approximate $U_{ab}(s)$ as an expansion in a conformal mapping variable $\xi(s)$ Gasparyan, Lutz (2010)



How good is Born left-hand cut for $\{\gamma\gamma, \pi\pi, K\bar{K}\}$?



Input: experimental data/Roy analysis + threshold parameters NNLO + Adler zero NLO

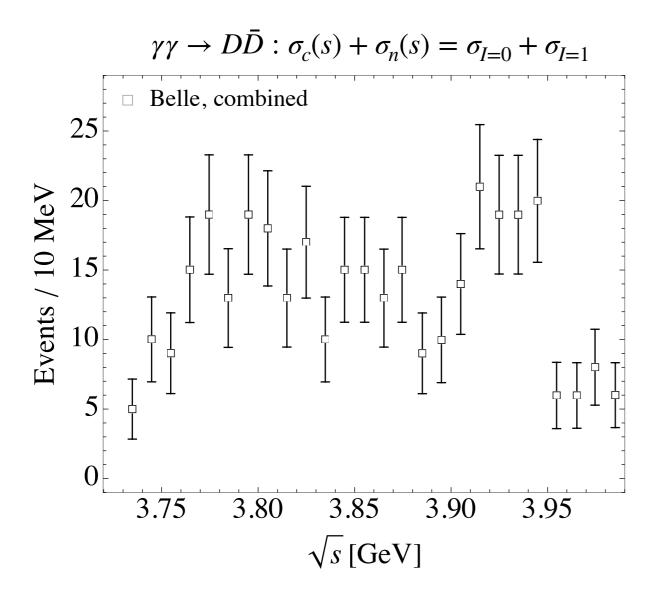
	Our r	esults	Roy-like analyses	
	pole position, MeV	couplings, GeV	pole position, MeV	couplings, GeV
$\sigma/f_0(500)$	$458(10)_{-15}^{+7} - i 256(9)_{-8}^{+5}$	$\gamma \gamma : 5.6(1)(1) \cdot 10^{-3}$	$449_{-16}^{+22} - i275(15)$	$\gamma\gamma:6.1(7)\cdot10^{-3}$
		$\pi\pi: 3.33(8)^{+0.12}_{-0.20}$		$\pi\pi: 3.45^{+0.25}_{-0.29}$
		$K\bar{K}: 2.11(17)^{+0.27}_{-0.11}$		$Kar{K}:-$
$f_0(980)$	$993(2)_{-1}^{+2} - i 21(3)_{-4}^{+2}$	$\gamma \gamma : 4.0(8)^{+0.3}_{-1.1} \cdot 10^{-3}$	$996_{-14}^{+7} - i25_{-6}^{+11}$	$\gamma \gamma : 3.8(1.4) \cdot 10^{-3}$
		$\pi\pi: 1.93(15)^{+0.07}_{-0.12}$		$\pi\pi:2.3(2)$
		$K\bar{K}: 5.31(24)^{+0.04}_{-0.24}$		$Kar{K}:-$

I.D, Deineka, Vanderhaeghen (2020)

Caprini et al. (2006), Garcia-Martin et al. (2011) Moussallam (2011), Dai Pennington (2016)

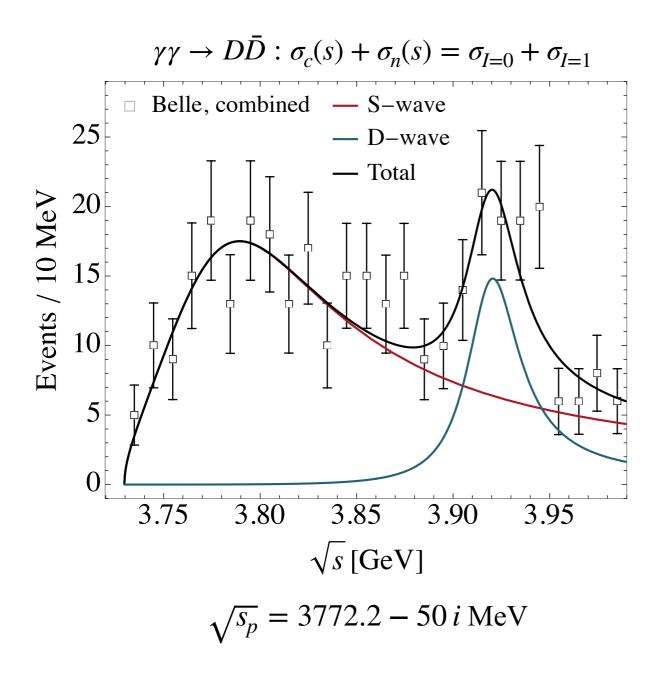
Naïve analysis of the combined $\gamma\gamma \to D\bar{D}$ data

S-wave: I = 0 with dispersive rescattering, I = 1 only Born \Rightarrow 2 parameters from N/D + normalisation ratio (S/D wave)



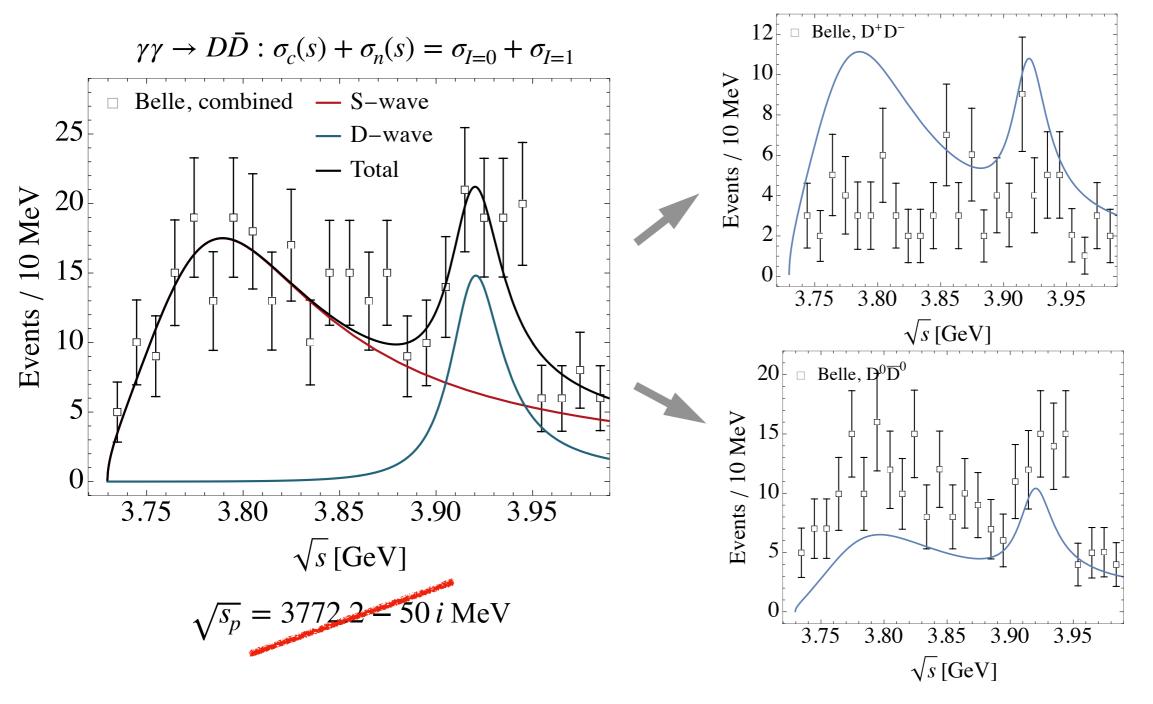
Naïve analysis of the combined $\gamma\gamma \to D\bar{D}$ data

S-wave: I = 0 with dispersive rescattering, I = 1 only Born \Rightarrow 2 parameters from N/D + normalisation ratio (S/D wave)



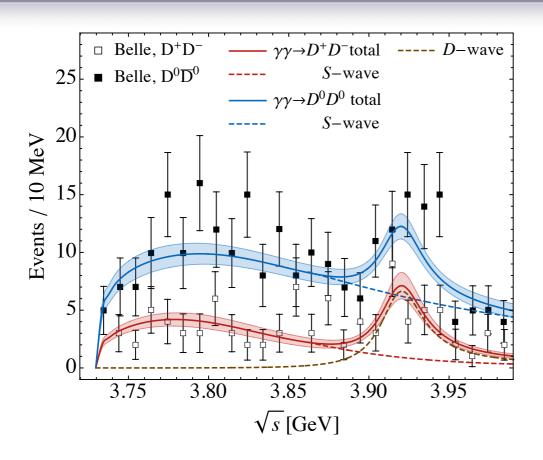
Naïve analysis of the combined $\gamma\gamma \to D\bar{D}$ data

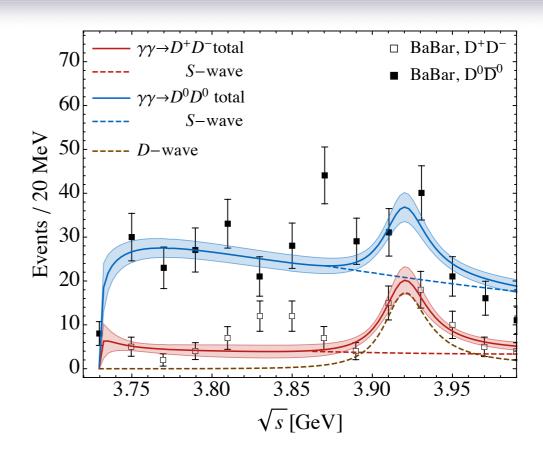
S-wave: I = 0 with dispersive rescattering, I = 1 only Born \Rightarrow 2 parameters from N/D + normalisation ratio (S/D wave)



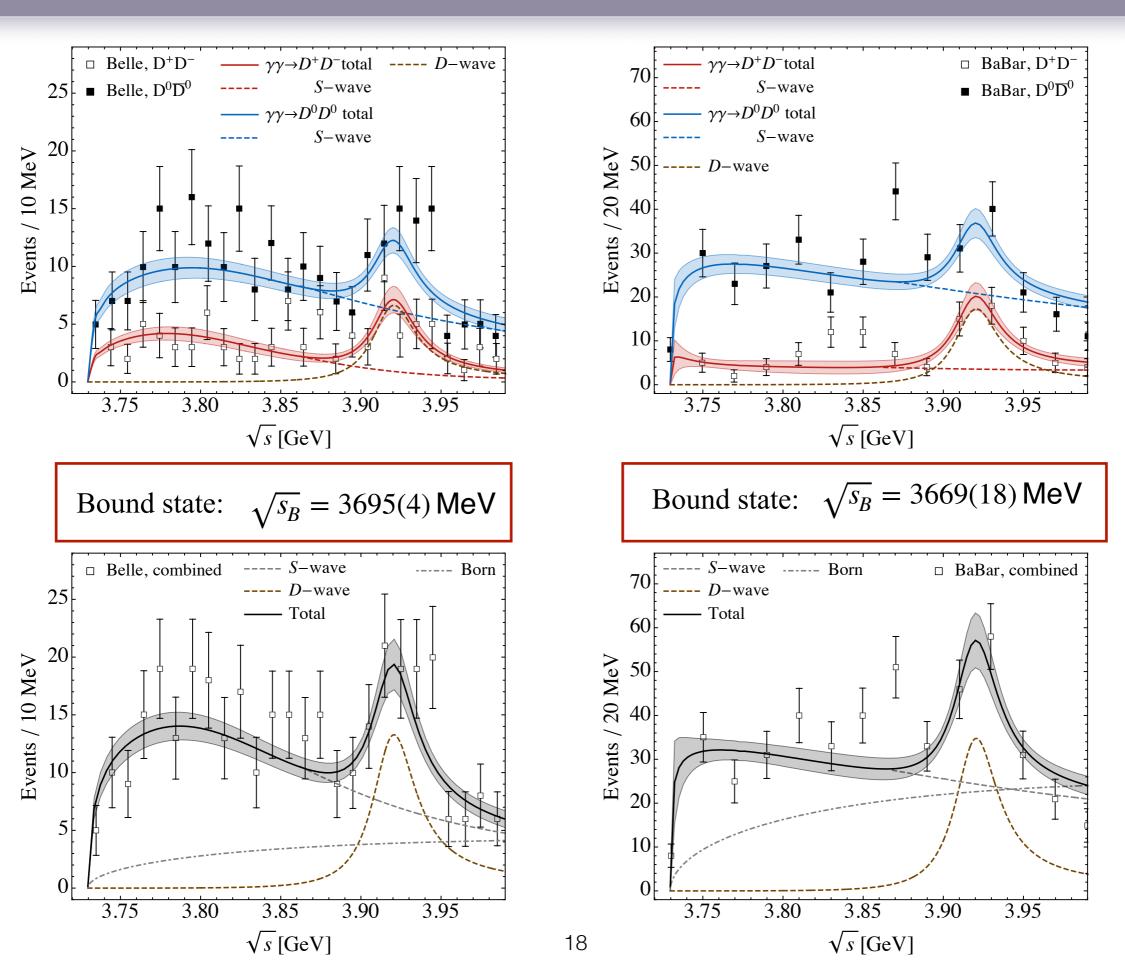
The fit to combined $\sigma_c(s) + \sigma_n(s)$ data **does not** describe individually $\sigma_c(s)$, $\sigma_n(s)$

Analysis of $\gamma\gamma \to D^+D^-$ and $\gamma\gamma \to D^0\bar{D}^0$ data

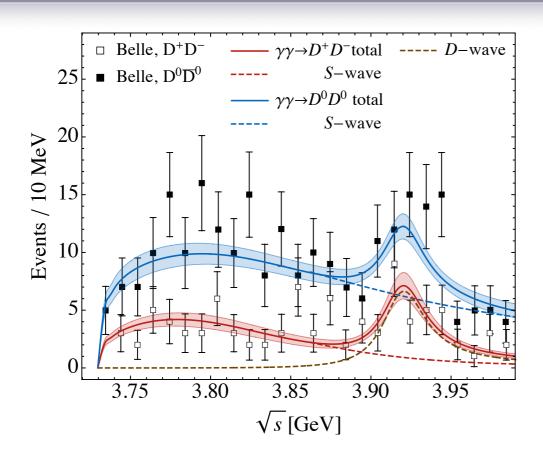


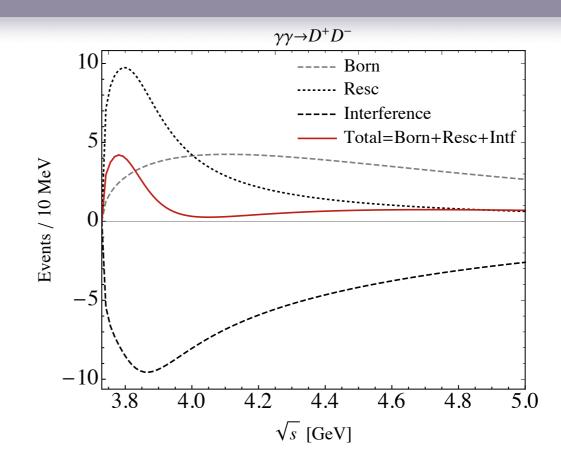


Analysis of $\gamma\gamma \to D^+D^-$ and $\gamma\gamma \to D^0\bar{D}^0$ data

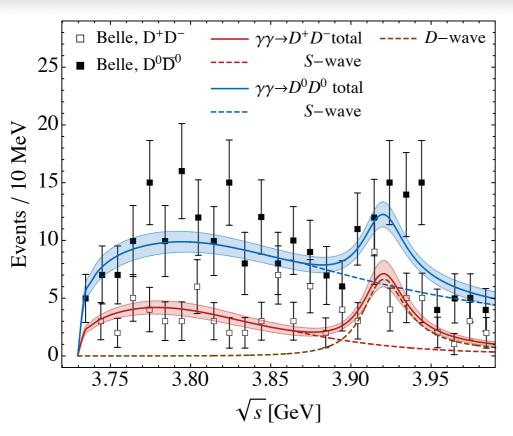


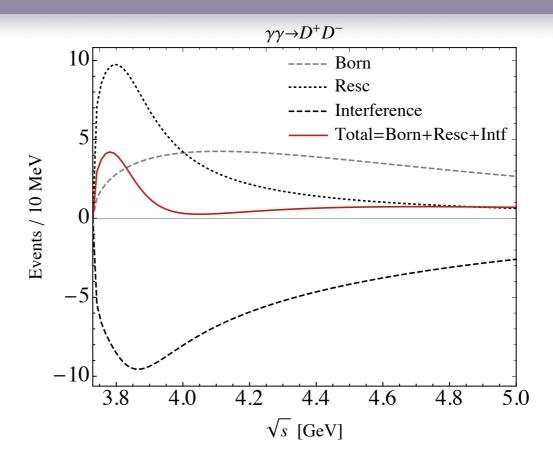
Destructive interference



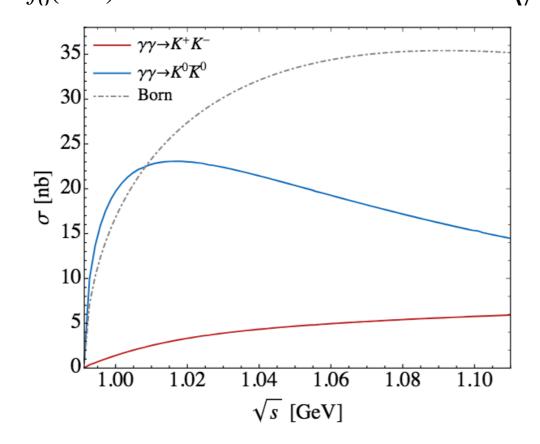


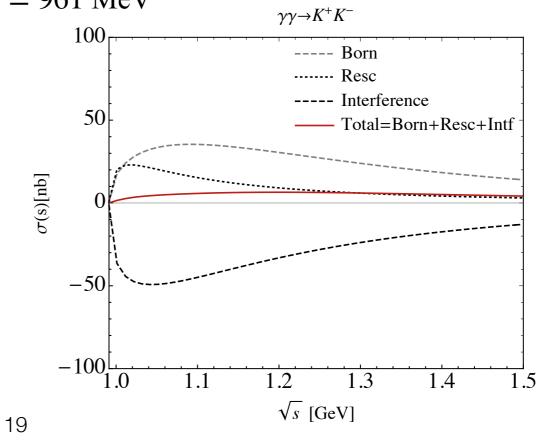
Destructive interference



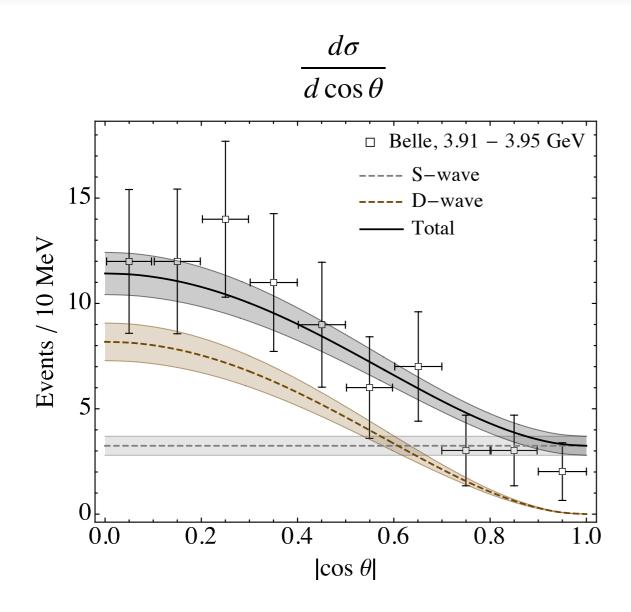


Consider again $\{\pi\pi, K\bar{K}\}$ coupled channel system and switch off $\pi\pi$ channel $\Longrightarrow f_0(980)$ becomes a $K\bar{K}$ bound state with $\sqrt{s_B} = 961$ MeV



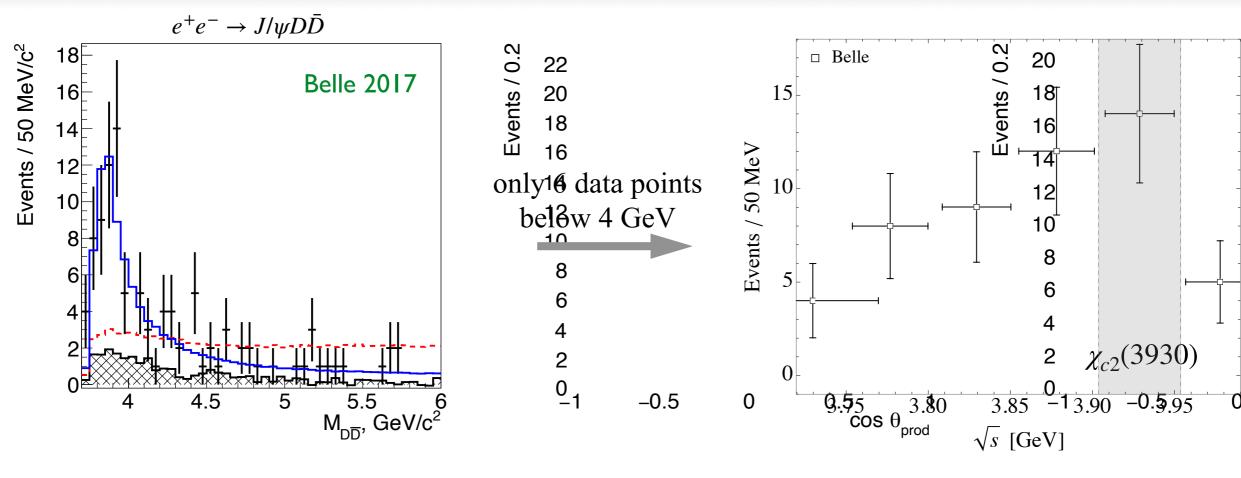


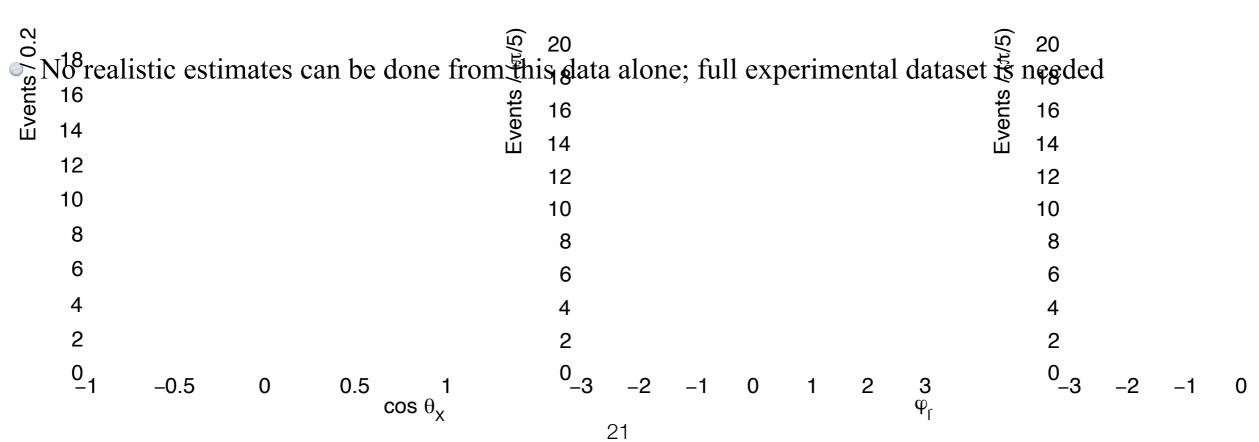
$\gamma\gamma \to D\bar{D}$ angular distribution



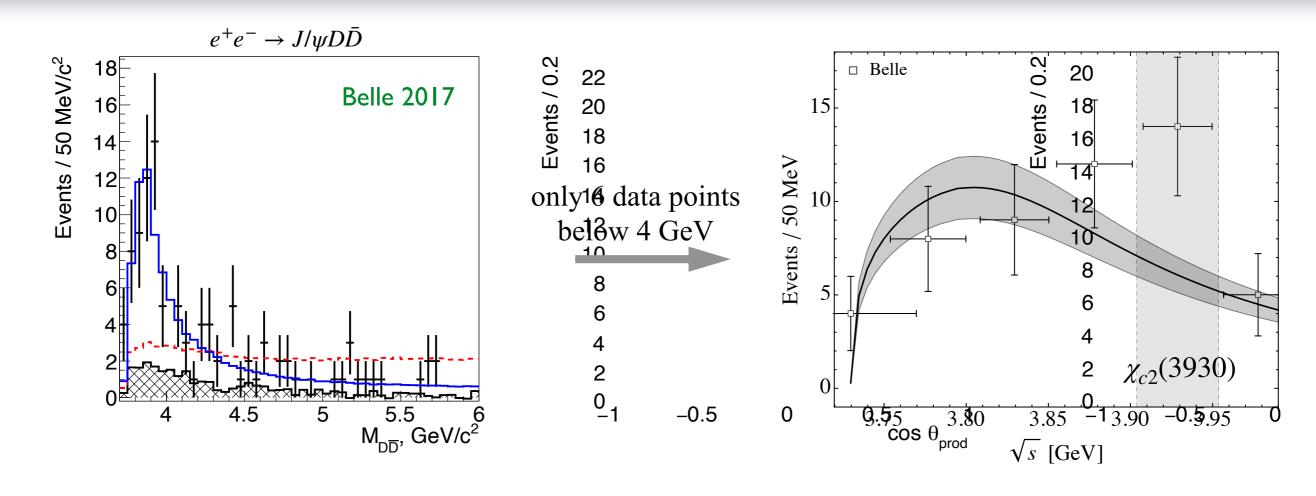
Angular distribution is mainly D-wave: however, one cannot exclude an additional small S-wave contribution from $\chi_{c0}(3915)$

$e^+e^- \rightarrow J/\psi D\bar{D}$ data





$e^+e^- \rightarrow J/\psi D\bar{D}$ data



No realistic estimates can be done from this data alone; full experimental dataset is needed Post-diction based on the obtained $D\bar{D}$ makes function shows a good description of the S-wave region 14

$$\frac{d\sigma}{d\sqrt{s}} = N \frac{\lambda^{1/2}(s, q^2, \frac{12}{n_0^2/\psi}) \lambda^{1/2}(s, m_D^2, m_D^2)}{8q^6\sqrt{s}} \left| D_{DD}^{-1}(s) \right|^2$$

$$\frac{d\sigma}{d\sqrt{s}} = N \frac{\lambda^{1/2}(s, q^2, \frac{12}{n_0^2/\psi}) \lambda^{1/2}(s, m_D^2, m_D^2)}{8q^6\sqrt{s}} \left| D_{DD}^{-1}(s) \right|^2$$

$$\frac{8q^6\sqrt{s}}{6}$$

$$\frac{6}{4}$$
the only fitting parameter 4

Our results based on $\gamma\gamma \rightarrow D\bar{D}$ data are consistent with $e^+e^-_0 \rightarrow I/\psi D\bar{D}$ data φ_Γ

0_3 -2 -1 0

Conclusion and outlook

- lacktriangleq D ispersive analysis of the $\gamma\gamma \to D^+D^-, D^0\bar{D}^0$ data, consistency check with the $e^+e^- \to J/\psi D\bar{D}$ data
- \square No broad resonance corresponding to X(3860) found
- $oldsymbol{\square}$ Bound state below the $Dar{D}$ threshold, $\sim Dar{D}$ molecule
- lacktriangle More data is needed: Belle II $\gamma\gamma \to D\bar{D}$, BESIII decay $\psi(3770) \to D\bar{D}\gamma$, PANDA ...

Still an open question about $\chi_{c0}(2P)$: is it a $D\bar{D}$ molecular or it is a X(3915)?

$$\begin{array}{c} X(3915) \\ \chi_{c0}(3860) \\ D\bar{D}_{mol.} \end{array}$$

 $_{c1}(3872)$

 $\chi_{c2}(3930)$

- ☐ Dispersion theory can be applied to many other exciting processes
- \square Light: $\gamma\gamma \to \pi^0\eta$, $K\bar{K}$; $(g-2)_\mu$ HLBL contributions
- \square { $J/\psi J/\psi$, $J/\psi \psi(2S)$ } scattering LHCb

Thank you!

Extra slides

Convergence of conformal expansion

Good convergence with 3 parameters in conformal mapping expansion ⇒ there is no need for more parameters

