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Einstein-de Haas effect

Electron spins get aligned in external magnetic field which is
compensated by rotation of the ferromagnetic material.
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Converse: Barnett effect

Spontaneous magnetization when spun around. Transformation of
orbital angular momentum into spin alignment. Angular velocity
decreases with appearance of magnetic field. Explanation appeals to
spin-orbit coupling.
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Generation of magnetic field in heavy ion collisions

[Adapted from D. Kharzeev @ CPOD 2013.]
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Magnetic field time evolution

[K. Tuchin, Int. J. Mod. Phys. E23, 1430001 (2014).]
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Global angular momentum in heavy ion collisions

[B. Mohanty, ICTS News 6, 18-20 (2020).]
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Angular momentum generation in non-central collisions

[F. Becattini, et al., Phys. Rev. C77, 024906 (2008).]
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Adapted from F. Becattini
‘Subatomic Vortices’

Amaresh Jaiswal (NISER) Spin-(magneto)hydrodynamics 9



Hydrodynamics with angular momentum conservation

Apply relativistic (magneto)-hydrodynamics to understand
particle polarization.

Hydrodynamic evolution should ensure total angular momentum
conservation.

Formulation of relativistic magneto-hydrodynamics with angular
momentum conservation necessary.

Polarization processes are generally dissipative in nature.

Dissipation should also be incorporated in the formulation.

Relativistic kinetic theory framework.

Geometrical approach with torsionful curved background.
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Angular momentum conservation: particles

Angular momentum of a particle with momentum p⃗:

L⃗ = x⃗× p⃗ ⇒ Li = εijk xi pj

One can obtain the dual tensor:

Lij ≡ εijk Lk ⇒ Lij = xi pj − xj pi

We know that both definitions are equivalent.

In absence of external torque,
dL⃗

dt
= 0, we also have: ∂iLij = 0.

Relativistic generalization: Lµν = xµpν − xνpµ and ∂µL
µν = 0.

This treatment valid for point particles.

For fluids, particle momenta → “generalized fluid momenta”

The energy-momentum tensor
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Angular momentum conservation: fluid

The orbital angular momentum for relativistic fluids is defined as

Lλ,µν = xµT λν − xνT λµ

Keeping in mind the energy-momentum conservation, ∂µT
µν = 0:

∂λL
λ,µν = Tµν − T νµ

Obviously, for symmetric Tµν , orbital angular momentum is
automatically conserved. Classically Tµν symmetric.

For medium constituent with intrinsic spin, different story

Jλ,µν = Lλ,µν + Sλ,µν + L-S couplings

Ensure total angular momentum conservation: ∂λJ
λ,µν = 0.

Basis for formulation of spin Hydrodynamics.
[Florkowski et. al., Prog.Part.Nucl.Phys. 108 (2019) 103709; Bhadury et. al.,

Eur.Phys.J.ST 230 (2021) 3, 655-672]
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Pseudo-gauge transformations

Ignoring the L-S coupling terms,

Jλ,µν = Lλ,µν + Sλ,µν

With ∂µT
µν = 0, and ∂λL

λ,µν = Tµν − T νµ, ∂λJ
λ,µν = 0 leads

to,
∂λS

λ,µν = T νµ − Tµν

Hence the final hydrodynamic equations can be written as

∂µT
µν = 0, ∂λS

λ,µν = T νµ − Tµν

Also holds with the following redefinition

T̃µν = Tµν +
1

2
∂λ
Ä
Φλ,µν − Φµ,λν − Φν,λµ

ä
S̃λ,µν = Sλ,µν − Φλ,µν

Freedom due to space-time symmetry; including torsion fixes this.
[Gallegos et. al., SciPost Phys. 11, 041 (2021); Hongo et. al., JHEP 11 (2021) 150]
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Non-dissipative spin-hydrodynamics from kinetic theory

The phase-space for single particle distribution function gets
extended f(x, p, s).

The equilibrium distribution for Fermions is given by

feq(x, p, s) =
1

exp
[
β · p− ξ − 1

2 ω : s
]
+ 1

®
β · p ≡ βµp

µ

ω : s ≡ ωµνs
µν

Quantities βµ = uµ/T, ξ = µ/T, ωµν are functions of x.

ξ, βµ, ωµν : Lagrange multipliers for conserved quantities.

sµν : Particle spin, similar to particle momenta pµ.

Hydrodynamics: average over particle momenta and spin.

Classical treatment of spin.
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Dissipative spin-hydrodynamics Bhadury et. al., PLB 814, 136096 (2021)

Introduce out-of-equilibrium distribution function f(x, p, s).

Use Boltzmann equation for evolution of f(x, p, s).

Express hydrodynamic quantities in terms of f(x, p, s).

Tµν(x) =

∫
dPdS pµpν

[
f(x, p, s) + f̄(x, p, s)

]
Nµ(x) =

∫
dPdS pµ

[
f(x, p, s)− f̄(x, p, s)

]
Sλ,µν(x) =

∫
dPdS pλsµν

[
f(x, p, s) + f̄(x, p, s)

]
dP ≡ d3p

Ep(2π)3
, dS ≡ m

d4s

π ‘
δ(s · s+ ‘2) δ(p · s)

‘2 =
1

2

Å
1

2
+ 1

ã
=

3

4
: sµ ≡ 1

2m
ϵµναβpνsαβ

Classical treatment of spin: internal angular momentum.
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Relativistic spin-magnetohydrodynamics [arXiv:2204.01357]

The particle four-current and its conservation is given by

Nµ = nuµ + nµ, ∂µN
µ = 0

Total stress-energy tensor of the system: Tµν = Tµν
f + Tµν

int + Tµν
em

Tµν
f = ϵuµuν − (P +Π)∆µν + πµν ,

Tµν
int = −Πµuν − Fµ

αM
να

Tµν
em = −FµαF ν

α +
1

4
gµνFαβFαβ

Maxwell’s equation: ∂µH
µν = Jν and Hµν = Fµν +Mµν ,

∂µT
µν
em = F ν

αJ
α

Current generating external field, Jµ = Jµ
f + Jµ

ext where Jµ
f = qNµ,

∂µT
µν = −fν

ext, fν
ext = F ν

αJ
α
ext
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Equations of motion

Divergence of matter part of energy-momentum tensor,

∂νT
µν
f = Fµ

αJ
α
f +

1

2
(∂µF να)Mνα

Next, consider total angular momentum conservation:

Jλ,µν = Lλ,µµ + Sλ,µν

In presence of external torque its divergence leads to,

∂λJ
λ,µν = −τµνext, τµνext = xµfν

ext − xνfµ
ext

Torque due to moment of external force; “pure” torque ignored.

The orbital part of angular momentum and its divergence is

Lλ,µν = xµT λν − xνT λµ, ∂λL
λ,µν = −τµνext

Spin part of the total angular momentum is conserved

∂λS
λ,µν = 0

Along with particle four-current conservation, ∂µN
µ = 0.
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Boltzmann equation

One can also define the polarization-magnetization tensor as

Mµν = m

∫
dPdS mµν

(
f + f̄

)
Boltzmann equation (BE) in relaxation-time approximation (RTA)Å

pα
∂

∂xα
+mFα ∂

∂pα
+mSαβ ∂

∂sαβ

ã
f = C[f ] = − (u · p) f − feq

τeq

The force term is:

Fα =
q

m
Fαβpβ +

1

2

Ä
∂αF βγ

ä
mβγ , mαβ = χsαβ

There is a “pure” torque term:

Sαβ = 2F γ[αmβ]
γ −

2

m2

(
χ− q

m

)
Fϕγ s

ϕ[α pβ]pγ

We ignore this “pure” torque term for now.
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Einstein-de Haas and Barnett effects

The equilibrium polarization-magnetization tensor is

Mµν
eq = m

∫
dPdS mµν

(
feq + f̄eq

)
Magnetic dipole moment mµν = χsµν .

χ: resembles the gyromagnetic ratio.

Integrating over the momentum and spin degrees of freedom,

Mµν
eq = a1 ω

µν + a2 u
[µuγω

ν]γ

In global equilibrium, ωµν corresponds to rotation of the fluid.

Rotation produces magnetization (Barnett effect) and vice versa
(Einstein-de Hass effect).
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Hydrodynamic equations from kinetic theory

Impose Landau frame and extended matching conditions

uµT
µν = ϵuν , ϵ = ϵeq, n = neq, uλδs

λ,µν = 0

Zeroth, first and “spin” moment of the RTA collision vanishes∫
dPdS C[f ] =

∫
dPdS pµC[f ] =

∫
dPdS sµνC[f ] = 0

Using definitions of hydro quantities, these moments of BE gives

∂µN
µ = 0, ∂νT

µν
f = Fµ

αJ
α
f +

1

2
(∂µF να)Mνα, ∂λS

λ,µν = 0

Same equations as obtained from macroscopic arguments.

Polarization/magnetization effects are dissipative in nature.

Boltzmann equation → dissipative spin-magnetohydodynamics.
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Dissipative effects

In simple terms: πyx = 2 η ∂⟨yux⟩, Π = −ζ ∂ ·u, nx = κ ∂⟨x⟩a

Charge/heat conductivity: fluid’s resistance to flow of charge/heat.

Dissipation to spin current: development of Kubo formalism.

Amaresh Jaiswal (NISER) Spin-(magneto)hydrodynamics 21



Our work in this direction within kinetic theory

Ideal spin-hydrodynamics:

W. Flokowski, B. Friman, A. Jaiswal and E. Speranza, Physical
Review C 97, 041901 (2018).

W. Flokowski, B. Friman, A. Jaiswal, R. Ryblewski and E.
Speranza, Physical Review D 97, 116017 (2018).

Dissipative spin-hydrodynamics:

S. Bhadury, W. Flokowski, A. Jaiswal,
A. Kumar, and R. Ryblewski,
Physics Letters B 814 (2021) 136096.

S. Bhadury, W. Flokowski, A. Jaiswal,
A. Kumar, and R. Ryblewski,
Physical Review D 103, 014030 (2021).

Relativistic spin-magnetohydrodynamics [arXiv:2204.01357]; to be
published in Physical review Letters.
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Ongoing work from geometrical approach

Starting from the symmetries of the Lagrangian of a given theory,
one can construct conserved currents using Noether’s theorem.

Energy-momentum tensor-variation of Lagrangian with metric
gµν : conservation is a consequence of diffeomorphism invariance.

Conserved charge current-variation with gauge field Aµ:
consequence of local gauge symmetry.

Spin-current can be constructed similarly.

Price to pay: introduce torsion in metric,
non-Riemannian geometry.

Spin current: variation w.r.t torsion.

Angular momentum conservation:
consequence of local Lorentz invariance.
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Other relevant works

Other parallel approaches from Wigner function [N. Weickgenannt,

X.-l. Sheng, E. Speranza, Q. Wang and D. Rischke, PRD 100 (2019) 056018].

Appraoch based on chiral kinetic theory [S. Shi, C. Gale and S. Jeon,

PRC 103 (2021) 044906].

Appraoch based on Lagrangian method [D. Montenegro and G. Torrieri,

PRD 100 (2019) 056011].

Formulation with torsion in metric [A. D. Gallegos, U. Gürsoy and

A. Yarom, SciPost Phys. 11, 041 (2021); M. Hongo, X.-G. Huang, M. Kaminski,

M. Stephanov, H.-U. Yee, JHEP 11 (2021) 150].

Useful reviews on spin hydro: [W. Florkowski, R. Ryblewski and A. Kumar,

Prog.Part.Nucl.Phys. 108 (2019) 103709; S. Bhadury, J. Bhatt, A. Jaiswal and

A. Kumar, Eur.Phys.J.ST 230 (2021) 3, 655-672].

Relativistic spin-magnetohydrodynamics: unexplored area.

Much work needed in this direction.
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Thank you!
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