4-quark states from functional methods

Joshua Hoffer

Supervisor: Christian Fischer

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

28 October, 2022

Motivation

Motivation

- Powerful toolkit to classify <u>conventional</u> hadrons: Quark Model (QM).
- Lot of particles measured that do not fit into the QM picture.
- A few examples:
 - Light scalar mesons: σ , κ , a_0 , f_0
 - Exotic XYZ-states: $X(3872), X(3915), Z_c(3900), Z_c(4430)$
- More naturally explained as **4-quark states**.

Functional Framework

- Non-perturbative, fully relativistic framework.
- To compute the properties of bound states, use combination of:
 - DSEs: The QCD quantum equations of motion,

Functional Framework

- Non-perturbative, fully relativistic framework.
- To compute the properties of bound states, use combination of:
 - DSEs: The QCD quantum equations of motion,
 - Hadronic bound state equations: BSEs, Faddeev eqs. .

Eigenvalue equation

$$\lambda(P^2)\,\Gamma^{(n)} = K^{(n)}G^{(n)}\,\Gamma^{(n)}$$

with
$$\lambda(P^2 = -M^2) = 1$$

Joshua Hoffer (ITP - JLU Gießen)

4-quark states from functional methods

The 4-quark BSE:

Calculations are done in the *Rainbow-Ladder truncation*:

Maris, Tandy, PRC 60 (1999) Qin et al., PRC 84 (2011)

Lorentz-invariants

Joshua Hoffer (ITP - JLU Gießen)

• Can cast the Lorentz-invariants into multiplets of S_4 :

Eichmann, Fischer, Heupel, Phys.Lett.B 753 (2016) 282-287

- One singlet: S₀
- One doublet: $D = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix}$
- Two triples: $T_0, T_1 \rightarrow subleading$
- Dressing functions: $f_i(S_0, D)$
- Poles dynamically generated in D
- "Physical basis": put poles in externally: $f_i(S_0, D) \rightarrow f_i(S_0) \cdot P_{ab} \cdot P_{cd}$

4-quark states from functional methods

2-body approach

• Assume dominant 2-body forces \rightarrow simplify the 4-body BSE to get the **2-body approach**.

Santowsky, Fischer, Eur.Phys.J.C 82 (2022) 4, 313 Santowsky, Eichmann, Fischer, Wallbott, Williams, Phys.Rev.D 102 (2020) 5, 056014

- It is a coupled system of meson-meson and diquark-antidiquark components which interact via quark exchange.
- This approach is close in spirit to an effective field theory description.

Results in 2-body formalism

Resonances

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

• Poles in scattering amplitude:

- Bound state: on physical sheet
- Resonance: on unphysical (2nd) sheet

Complex plane & Branch cuts in BSE

$$\lambda(P^2)\,\Gamma^{(n)} = K^{(n)}G^{(n)}\,\Gamma^{(n)}$$

- It is possible to solve the BSE for complex eigenvalues.
- Usually carry out computations in rest frame of the bound state: $P^{\mu} = i \mathbf{M} \hat{e}_{4}^{\mu}$. (Eucl. space-time)
- Add term: $P^{\mu} = iM \hat{e}_4^{\mu} \rightarrow \left(iM + \frac{\Gamma}{2}\right) \hat{e}_4^{\mu}$.
- Pole is identified if $\operatorname{Re}(\lambda(P^2)) = 1$ & $\operatorname{Im}(\lambda(P^2)) = 0$.
- Caveat: Only possible to calculate in the first Riemann sheet \rightarrow need analytic continuation.

Branch cut in BSE:

$$\Gamma^{(n)}(p^2) = \int dq^2 \int dz \int dy \int d\phi \ K^{(n)}(p^2, q^2) G^{(n)} \Gamma^{(n)}(q^2)$$

Pole structures

$$\frac{1}{(q \pm P)^2 + m^2} = \frac{1}{q^2 \pm 2\sqrt{q^2}\sqrt{P^2}z + P^2 + m^2}$$

in the interaction topologies \rightarrow restrict the range of P^2 .

Santowsky, Fischer, Phys.Rev.D 105 (2022) 3, 034025

- Used clever combination of path deformation and analytic continuation in the 2-body approach.
- Extract the mass + decay width of the σ, a_0, f_0 .

PDG (M $-i\Gamma/2$): σ : (400 - 550) - i(200 - 350) MeV a₀: (960 - 1030) - i(20 - 70) MeV f₀: (980 - 1010) - i(20 - 35) MeV

σ	state	М	$\Gamma/2$	_	f_0	a_0	setup	М	$\Gamma/2$
	$\pi\pi + 0^+ 0^+ + q\bar{q}$	291(5)	121(22)		•	•	$K\bar{K} + 0^+0^+$	1001(4)	24(16)
	$\pi\pi + 0^+0^+$	302(7)	148(31)		•		$s\bar{s}$	1073(10)	0
	$\pi\pi$	301(7)	158(29)		•		$s\bar{s} + K\bar{K}$	927(18)	1(3)
	qar q	661(8)	Ò		•		$s\bar{s} + K\bar{K} + 0^+0^+$	915(20)	2(3)

Santowsky, Fischer, Phys.Rev.D 105 (2022) 3, 034025

10/13

Results in 4-body formalism

Dominant substructure

Complex plane in the 4-body approach

Computation with path deformation candidate:

Summary:

- Motivated why 4-quark states are a highly interesting area of research.
- Functional methods are a great toolkit to make qualitative predictions about masses and internal structure of 4-quark candidates.
- Showed results for masses + decay widths obtained in the 2-body approach.
- Showed preliminary results for computation in the complex plane in the 4-body approach.

Outlook:

- Further investigation of the BSE in the complex plane.
- Check if masses + decay widths can be extracted in the 4-body framework using the technique developed in the 2-body approach.

Backup slides

Pion BSE

Pion Bethe-Salpeter amplitude is given by:

 $\Gamma_{\text{pion}}(p^2) = E(p^2) \cdot \tau_1(p, P) + F(p^2) \cdot \tau_2(p, P) + G(p^2) \cdot \tau_3(p, P) + H(p^2) \cdot \tau_4(p, P)$

Complex plane in the 4-body approach

Computation without path deformation:

Backup slides

Results (Heavy-light mesons $c\bar{c}q\bar{q}$ (hidden charm))

$I(J^{PC})$	exp. candidate	mass 2-body BSE [GeV]	mass 4-body BSE [GeV]
$0(0^{++})$	X(3915)	3.49(25)	3.50(42)
$0(1^{++})$	$\chi_{c1}(3872)$	3.85(18)	3.92(7)
$1(1^{+-})$	$Z_c(3900)$	3.79(31)	3.74(9)

Wallbott, Eichmann, Fischer, Phys.Rev.D 102 (2020) 5, 051501 Santowsky, Fischer, Eur.Phys.J.C 82 (2022) 4, 313 Backup slides

Results (Heavy-light mesons $cc\bar{q}\bar{q}$ (open charm))

$I(J^P)$	exp. candidate	mass 2-body BSE [GeV]	mass 4-body BSE [GeV]
$1(0^{+})$	_	3.21(2)	3.80(10)
$0(1^+)$	$T_{cc}^{+}(\sim 3875)$	3.49(48)	3.90(8)
$1(1^{+})$	_	3.47(24)	4.22(44)

Wallbott, Eichmann, Fischer, Phys.Rev.D 102 (2020) 5, 051501 Santowsky, Fischer, Eur.Phys.J.C 82 (2022) 4, 313

Eigenvalue curve

Light scalar mesons

The light scalar (0^{++}) mesons is an example where the Quark Model yields wrong predictions:

Light scalar mesons

Pelaez, Phys.Rept. 658 (2016)

Backup slides

Branch cut in 4-body approach

