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Inhomogeneous chiral phases away from the chiral limit
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A plot twist? Gross-Neveu Model!

Revised Phase Diagram of the Gross-Neveu Model
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A plot twist? Gross-Neveu Model!

Regulator dependence of
inhomogeneous phases in the
2+1-dimensional Gross-Neveu model
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Regulator dependence of
inhomogeneous phases in the
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A plot twist? Gross-Neveu Model!
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Quantum Chromodynamics
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Dyson-Schwinger study of chiral density waves in QCD
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- We chose to start from a 2P| effective action
F=Trlog [S™"] = Tr [1—55'S] + apy

and rather than expand on the condensates, we expand
the propagator itself

S(R1, Ry) = S(R)3(R1 — Ry) + 0S(R1, R2)
- Fundamentally, we want a Taylor expansion
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- So zero-th order we get what we should
M = —Triog[S] — Tr [1 = S;'S] + Mpi[S]

- First order we get what we must

= or
(1) _ -1 _ ¢ 2P
r Tr KS Sy — 55 ) 55]

- Second order is the leading order

82T 2pi
05120534

r@ = Tr[( 1<55)2]+%Tr

55125534]
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- Take a fixed temperature slice of the phase diagram.
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Stability Condition
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- The Wigner-Weyl solution can show instabilities!

22



Stability Analysis

Stability Condition

- However, not for every simplification of 4S.
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