

Latest results from Kaon experiments at CERN

On behalf of the NA62 collaboration

Nicolas Lurkin

CP3, Université Catholique de Louvain Excited QCD 2022, 27-10-2022

Outline

□ The NA48/2 setup □ $K^{\pm} \rightarrow \pi^{0}\pi^{0}\mu^{\pm}\nu$ □ The NA62 experiment and detector □ $K^{+} \rightarrow \pi^{+}\nu\overline{\nu}$ □ $K^{+} \rightarrow \pi^{0}e^{+}\nu\gamma$ □ $K^{+} \rightarrow \pi^{+}\mu^{+}\mu^{-}$ □ $K^{+} \rightarrow \pi^{+}\mu^{+}\mu^{-}$

Fixed target Kaon experiments at CERN

The NA48/2 setup

The $K^{\pm} ightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ decay

\Box Status of K_{l4} decays

- $\succ \ell = \mu$ depends on two form-factors (F, R)
- > F from lepton universality (experimental parametrization from K_{e4}^{00})
- ≻ R from ChPT

Experimentally

$K_{\ell 4}$ mode	BR $[10^{-5}]$	N _{cand}	
K_{e4}^{\pm}	4.26 ± 0.04	1108941	NA48/2 (2012)
K_{e4}^{00}	2.55 ± 0.04	65210	NA48/2 (2014)
$K_{\mu 4}^{\pm}$	1.4 ± 0.9	7	Bisi et al. (1967)
$K_{\mu 4}^{00}$?	0	

 \succ This analysis: first observation of $K_{\mu 4}^{00}$

The $K^{\pm} ightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ decay

NA62 Beam and Detector

NA62:

Bean

- \succ Main goal is $K^+
 ightarrow \pi^+ v \overline{v}$
- Fixed target
- In-flight decay technique

NA62 Beam & Detector

The $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay

Theoretically clean:

- Dominant short-distance contribution
- Hadronic matrix element extracted from $BR(K^+ \rightarrow \pi^0 e^+ \nu)$

□ Highly suppressed:

- > FCNC process forbidden at tree level
- CKM suppression
 - $(s \rightarrow d \text{ coupling}, BR \sim |V_{ts}V_{td}|^2)$

The $K^+ ightarrow \pi^+ \nu \overline{\nu}$ analysis

□ Strategy

- \succ Kinematic suppression $\mathcal{O}(10^4)$
- MVA used for PID and upstream background rejection
 - $\succ O(10^7)$ muon rejection
 - $\succ \mathcal{O}(10^7) \pi^0$ rejection

- High efficiency VETO system with excellent time resolution (100 ps)
- Blind Analysis
- Data-driven background evaluation when possible

The $K^+ ightarrow \pi^+ \nu \overline{\nu}$ analysis

Pions produced upstream of the fiducial volume

- Early kaon decays
- Interaction of beam particles with beam spectrometer material
- Fake association of detected pions to accidental particles
 Mitigation
 - Geometrical cuts & BDT cut on backtracked pion position
 - ➤ Kaon-pion association effective
 - Data-driven background estimation

Excited QCD 2022, 27-10-2022

The $K^+ ightarrow \pi^+ \nu \overline{\nu}$ analysis

Excited QCD 2022, 27-10-2022

The $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay

The $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ analysis

(3) [Eur. Phys. J. C 81.2 (2021)]

	Reg.	E_{γ} cut	$ heta_e$, γ cut	Ratio $\begin{bmatrix} 10^{-2} \end{bmatrix}$			A_{ξ}	
				$\mathcal{O}ig(p^6ig) \mathit{ChPT}$ (1)	<i>ISTRA</i> + (2)	OKA (3)	NA62 preliminary	NA62 preliminary
	R_1	$E_{\gamma} > 10 \; {\rm MeV}$	$ heta_e, \gamma > 10^\circ$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.684 \pm 0.005 \pm 0.010$	$-0.001 \pm 0.003 \pm 0.002$
	R_2	$E_{\gamma} > 30 \; {\rm MeV}$	$ heta_e, \gamma > 20^\circ$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.559 \pm 0.003 \pm 0.005$	$-0.003 \pm 0.004 \pm 0.003$
	<i>R</i> ₃	$E_{\gamma} > 10~{ m MeV}$	$0.6 < \cos \theta_e, \gamma < 0.9$	0.559 <u>+</u> 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.523 \pm 0.003 \pm 0.003$	$-0.009 \pm 0.005 \pm 0.004$
(1) [Eur. Phys. J. C 50 (2007)] Relative precision improved by a factor >2 R_3 asymmetry precision improved by a factor >3								
(2) [Phys. Atom. Nucl. 70 (2007)]								

 \blacktriangleright Relative discrepancy with theory: 6 - 7% \blacktriangleright First measurement ever for R_1 and R_2

The $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay

[Phys. Part. Nucl. Lett. 5 (2008) 76–84]

[Nucl. Phys. B291 (1987) 692-719)]

Form factor parametrized in NLO ChPT $W(z) = G_F m_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z), z = \frac{m_{\mu\mu}^2}{m_K^2}$ [JHEP 08 (1998) 004]

Analysis

- 2017+2018 data
- Normalization with $K_{3\pi}$: $N_{K_{3\pi}} \approx 3.5 \times 10^{12}$
- Signal:
 - ► Acceptance: $A_{\pi\mu\mu} \approx 8.7\%$
 - > Expected background: ≈ 8 events ($K_{3\pi}$ with two pion decays $\pi \rightarrow \mu \nu$)
 - > 27679 events observed

The $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay

Excited QCD 2022, 27-10-2022

The $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ analysis

□ Model independent BR measurement

- $\gg BR(K^+ \to \pi^+ \mu^+ \mu^-) = (9.15 \pm 0.08) \times 10^{-8}$
- Improvement by a factor > 3
- Consistent with previous measurements

ChPT form factor parameter measurement

- Negative solution preferred
- \succ a₊ = −0.575 ± 0.013, b₊ = −0.722 ± 0.043
- Compatible with previous $K_{\pi\mu\mu}$ and $K_{\pi ee}$ measurements, as expected by LFU

The $K^+ ightarrow \pi^+ \gamma \gamma$ decay

Described by kinematic variables

$$z = \frac{(q_1 + q_2)^2}{m_K^2} = \left(\frac{m_{\gamma\gamma}}{m_K}\right)^2, y = \frac{(q_1 - q_2)^2}{m_K^2}$$

Decay rate and spectrum determined by a single ChPT parameter \hat{c}

[Phys. Lett. B386 (1996) 403]

 \Box Normalization: $K^+ \rightarrow \pi^+ \pi^0$

□ Main backgrounds:

Cluster merging

□ $K^+ \rightarrow \pi^+ \pi^- \pi^-$ with two non-reconstructed tracks □ Use control region with enhanced background contribution

□ Cluster merging:

- Select events with 1 track and 3 clusters
- > $\operatorname{tag} K^+ \to \pi^+ \pi^0 \pi^0$ (merged cluster energy matches expected)

The $K^+ ightarrow \pi^+ \gamma \gamma$ analysis

Measurement

- 2016-2018 dataset
- > z distribution sensitive to parameter
- > Signal region z > 0.25
- \succ Fit distribution to extract \hat{c}

	Number of events		
$K^+ \to \pi^+ \pi^0 \gamma$	$252 \pm 6_{stat} \pm 15_{syst}$		
$K^+ \to \pi^+ \pi^0 \pi^0$	$58 \pm 5_{stat} \pm 3_{syst}$		
$K^+ \to \pi^+ \pi^+ \pi^-$	$83 \pm 3_{stat} \pm 2_{syst}$		
Total background	$393 \pm 9_{stat} \pm 18_{syst}$		
Data	4039		
Data - background	3646 ± 67		

The $K^+ ightarrow \pi^+ \gamma \gamma$ analysis

□ Preliminary result $\hat{c} = 1.713 \pm 0.075_{stat} \pm 0.037_{syst}$

- $BR(K_{\pi\gamma\gamma}^{+}) = (9.73 \pm 0.17_{stat} \pm 0.08_{syst}) \times 10^{-7}$
- Total error reduced by a factor 3

Conclusions

□Long tradition of kaon measurements at CERN

- >NA48/2 result: First measurement of $BR(K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu)$
- \succ Updated measurement of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, compatible with SM predictions
- ► Relative precision of $BR(K^+ \rightarrow \pi^0 e^+ \nu \gamma) / BR(K_{e3})$ better than 1% in 3 regions, and measurement of T-asymmetry (first measurement in R2 and R3)
- >Improvement of factor >3 on $BR(K^+ \rightarrow \pi^+ \mu^+ \mu^-)$ and a_+, b_+ ChPT form factor parameters

Factor 3 improvement on measurement of \hat{c} ChPT parameter in $K^+ \rightarrow \pi^+ \gamma \gamma$

➢ Papers in preparation

>New data-taking period started in 2021 with improvement detector setup

THANK YOU