Theoretical study of heavy-quark diffusion in the quark-gluon plasma

NAJMUL HAQUE

School of Physical Science (SPS), National Institute of Science Education and Research (NISER), India

Excited QCD 2022, Italy

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-26-0) Oct 25, 2022 1/26

- [LO & NLO HTL results](#page-6-0)
- [Gribov quantization](#page-10-0)
- [Gribov confinement scenario in deconfined phase](#page-15-0)
- [Diffusion coefficient with Gribov propagator](#page-17-0)

[Conclusion](#page-25-0)

1 [Heavy quark diffusion coefficient](#page-2-0)

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 3/26

HQ diffusion coefficient

- When a heavy-quark passes through a thermal medium, it losses its kinetic energy due the collision as well as due to the radiation.
- Heavy quark diffusion coefficient is related with the collisional energy loss and momentum boardaning of the heavy-quark
- The momentum of the heavy quark evolves according to the Langevin equations as

$$
\frac{dp_i}{dt} = \xi_i(t) - \eta_D p_i, \quad \langle \xi_i(t)\xi_j(t') \rangle = \kappa \delta_{ij} \delta(t-t')
$$

• The diffusion constant in space, D_s , can be found by starting a particle at $x = 0$ at $t = 0$ and finding the mean-squared position at a later time,

$$
\langle x_i(t)x_j(t)\rangle = 2Dt\delta_{ij} \quad \to \quad 6D_s t = \langle x^2(t)\rangle.
$$

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 4/26

The relation between position and momentum $x_i(t) = \int_0^t dt' \frac{p_i(t')}{M}$, we have

$$
6D_{s}t = \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} \frac{1}{M^{2}} \langle p(t_{1}) p(t_{2}) \rangle = \frac{6Tt}{M\eta_{D}}
$$

$$
\Rightarrow D_{s} = \frac{T}{M\eta_{D}} = \frac{2T^{2}}{\kappa}.
$$

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) 0ct 25, 2022 5/26

• Momentum diffusion κ from the t-channel diagram of $qH \to qH$ and $gH \to gH$ scattering.

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 6/26

2 [LO & NLO HTL results](#page-6-0)

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 7/26

Leading order HTL PRC 71, 064904 (2005), Moore & Teaney

$$
3\kappa = \frac{C_F g^4}{4\pi^3} \int_0^{\infty} k^2 dk \int_0^{2k} q \, dq \frac{q^2}{(q^2 + m_D^2)^2}
$$

$$
\times \left[N_{f} n_F(k) [1 - n_F(k)] \left(2 - \frac{q^2}{2k^2} \right) + N_c n_B(k) [1 + n_B(k)] \left(2 - \frac{q^2}{k^2} + \frac{q^4}{4k^4} \right) \right]
$$

$$
= \frac{C_F g^4}{18\pi} \left[\left(N_c + \frac{N_f}{2} \right) \left[\ln \frac{2T}{m_D} + \frac{1}{2} - \gamma_E + \frac{\zeta'(2)}{\zeta(2)} \right] + \frac{N_f}{2} \ln 2 \right]
$$

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 8/26

PRC 71, 064904 (2005), Moore & Teaney

Next-to-Leading order HTLL PRL 100, 052301 (2008),

Caron-Huot,& Moore

$$
3\kappa = \frac{C_F g^4}{18 \pi} \Bigg[\Big(N_c + \frac{N_f}{2} \Big) \Big[\ln \frac{2T}{m_D} + \frac{1}{2} - \gamma_E + \frac{\zeta'(2)}{\zeta(2)} \Big] + \frac{N_f}{2} \ln 2 + 2.3302 \ \frac{N_c m_D}{T} \Big) \Bigg]
$$

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) 0ct 25, 2022 10 / 26

3 [Gribov quantization](#page-10-0)

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 11/26

Motivation

- The gluon and ghost propagators with Gribov quantization show an IR suppression and enhancement, respectively, as compared to the Faddeev-Popov case.
- These results heuristically encompass desirable features of confinement: the IR-suppressed gluon propagator indicates gluon confinement at large distance, and the IR-enhanced ghost is responsible for confinement.
- It was shown by Zwanziger (PRL94, 182301 (2005)) in a phenomenological way that a free gas of Gribov quasiparticles qualitatively captures the nonperturbative features of the lattice equation of state.

• In covariant gauge, the gluon propagator is

$$
D_{\mu\nu}^{ab}(K) = -\frac{\delta_{ab}}{K^2} \left[g_{\mu\nu} - (1 - \xi) \frac{K_{\mu} K_{\nu}}{K^2} \right]
$$

Faddeev-Popo action with ghost field

$$
S = S_{YM} + S_{GF} + S_{ghost}
$$

= $S_{YM} + \int d^4x \left(\bar{c}^a \partial^\mu (D_\mu c)^a - \frac{1}{2\xi} (\partial_\mu A^{\mu a})^2 \right)$

Gribov demonstrated for the first time in 1978 that the gauge condition proposed by Faddeev and Popov is not ideal.

 \bullet In the Gribov quantization, the YM partition function in Euclidean space reads

$$
Z = \int_{\Omega} \mathcal{D}A(x) V(\Omega) \delta(\partial \cdot A) \det[-\partial \cdot D(A)] e^{-S_{\text{YM}}}
$$

The restriction of the integration to the Gribov region is realized by inserting a function $V(\Omega)$ into the partition function, where

$$
V(\Omega) = \theta[1 - \sigma(0)] = \int_{-i\infty + \epsilon}^{+i\infty + \epsilon} \frac{d\beta}{2\pi i\beta} e^{\beta[1 - \sigma(0)]}
$$

represents the no-pole condition. Here, $1 - \sigma(P)$ is the inverse of the ghost dressing function $Z_G(P)$.

• The integration variable β is identified as the Gribov mass parameter γ_G after some redefinition.

Gribov's gluon propagator in the Landau gauge reads

$$
D_A(P) = \delta^{ab} \frac{P^2}{P^4 + m_G^4} \left(\delta^{\mu\nu} - \frac{P^{\mu}P^{\nu}}{P^2} \right)
$$

The ghost propagator in the Landau gauge

$$
D_c(P) = \delta^{ab} \frac{1}{1 - \sigma(P)} \cdot \frac{1}{P^2},
$$

• The inverse of the ghost dressing function is

$$
Z_G^{-1} \equiv [1 - \sigma(P)] = \frac{N_c g^2}{128\pi^2} \left[-5 + \left(3 - \frac{\gamma_G^4}{P^4} \right) \ln \left(1 + \frac{P^4}{\gamma_G^4} \right) + \frac{\pi P^2}{\gamma_G^2} + 2 \left(3 - \frac{P^4}{\gamma_G^4} \right) \frac{\gamma_G^2}{P^2} \arctan \frac{P^2}{\gamma_G^2} \right]
$$

4 [Gribov confinement scenario in deconfined phase](#page-15-0)

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 16/26

Applicability of Gribov confinement scenario

Ref: D. Zwanziger,PRD76, 125014 (2007)

- Long-distance behavior of the color-Coulomb potential $V_{\text{coul}}(R) \sim \sigma_{\text{coul}} R$, $\sigma_{\text{coul}} \sim 3\sigma$ and σ being the physical string tension between a pair of external quarks.
- It was also found numerically that the long-distance behavior of $V_{\text{coul}}(R)$ is consistent with a linear increase, $\sigma_{\text{coul}} > 0$, above the phase transition temperature, $T > T_c$, where σ vanishes.
- Investigation of the temperature dependence of σ_{coul} revealed that in the deconfined phase, the Coulomb string tension increases with T, which is consistent with a magnetic mass $\sigma_{\text{coul}}^{1/2}(T) \sim g_s^2(T) T$.
- Thus, from the numerical evidence one can say that the Gribov parameter is nonzero in the deconfined phase also.

5 [Diffusion coefficient with Gribov propagator](#page-17-0)

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 18 / 26

t-channel heavy quark scattering

$$
{}^{K}C_{k}
$$
\n

$$
3\kappa = \frac{C_F g^4}{4\pi^3} \int_0^\infty k^2 dk \int_0^{2k} q dq \frac{q^6}{(q^4 + \gamma_G^4)^2} \times \left[N_f n_F(k) [1 - n_F(k)] \left(2 - \frac{q^2}{2k^2} \right) + N_c n_B(k) [1 + n_B(k)] \left(2 - \frac{q^2}{k^2} + \frac{q^4}{4k^4} \right) \right]
$$

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 20/26

Fixing γ_G perturbatively with $(N_f = 3)$

Analytic form of γ_G , in the limit $T \to \infty$, Phys. Rev. D 88, 076008

$$
\gamma_G(T) = \frac{d-1}{d} \frac{N_c}{4\sqrt{2}\pi} g^2(T) T , \qquad (2)
$$

d is dimension of space time(here, 4), $q(T)$ is the running coupling, in perturbative limit(one loop):

$$
\frac{g^2(T)}{4\pi} = \frac{6\pi}{(11N_c - 2N_f)\ln\left(\frac{\Lambda}{\lambda_{\overline{\rm MS}}}\right)}\,,\tag{3}
$$

where

\n- $$
\pi T \leq \Lambda \leq 4\pi T
$$
, and
\n- $\Lambda_{\overline{\text{MS}}} = 0.176 \text{ GeV}$, (lattice result) .
\n

Fixing γ_G from LQCD fitted coupling PRD 88, 076008

$$
\alpha_S(T/T_c) \equiv \frac{g^2(T/T_c)}{4\pi} = \frac{6\pi}{11 \text{ N}_c \ln[c(T/T_c)]},
$$

 $c = 1.43$ for IR and $c = 2.97$ for UV $\rightarrow \alpha_{T=T_c}^{IR} = 1.59$ and $\alpha_{T=T_c}^{UV} = 0.524$. The fitted parameter values corresponding to the coupling data extracted from the large distance (IR) and the short distance (UV) behaviour of the heavy quark free energy .

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) 0ct 25, 2022 22 / 26

Result and conclusion

Figure: Plot of $(2\pi T)D_S$ vs (T/T_c) . For LO and NLO 2 loop coupling has been taken with $T_c/\Lambda_{\overline{MS}} = 1.15$.

Figure: Plot of $(2\pi T)D_S$ vs (T/T_c) . For LO and NLO 2 loop coupling has been taken with $T_c/\Lambda_{\overline{MS}} = 1.15$.

Figure: Plot κ/T^3 vs (T/T_c) . For NLO, one loop coupling has been taken with $\Lambda_{\overline{\rm MS}} = 0.176$ GeV.

Conclusion

- We have discussed existing LO and NLO HTLpt results for heavy quark diffusion coefficient.
- We have discussed the motivation to include Gribov quantization to the estimation of heavy-quark diffusion coefficients.
- We have also discussed our recent results for the heavy-quark diffusion rate in Gribov Plasma.

Thank you for your attention.

NAJMUL HAQUE (NISER) [Heavy-quark diffusion](#page-0-0) Oct 25, 2022 26 / 26