

Analytical dispersive parameterization for elastic scattering of spinless particles (arXiv: 2206.15223)

Volodymyr Biloshytskyi, PhD student at University of Mainz

in collaboration with Igor Danilkin, Xiu-Lei Ren, and Marc Vanderhaeghen

Excited QCD workshop, 24 - 28 Oct. 2022, Giardini-Naxos, Sicily, Italy

Introduction

- \checkmark The recent discoveries of exotic hadron resonances, done by LHCb, BESIII, COMPASS, Belle and other collaborations, excited a strong interest in hadron spectroscopy
- \checkmark The significant progress in lattice QCD studies of poorly known hadronic states is also observed

The correct identification of resonance parameters requires the search for poles of the S-matrix in the complex plane.

It is particularly important when

- there is an interplay between several **inelastic channels**
- the pole is lying **very deep** in the complex plane

S-matrix constraints and Roy analysis

[Roy, 1971]

[Colangelo et al., 2001]

[Garcia-Martin et al., 2011]

[Caprini et al., 2006]

The fundamental constraints of the theory of S-matrix

- Analyticity (causality)
- **Unitarity**
- Crossing symmetry

Roy (Roy-Steiner) analysis - the most rigorous way to implement all constraints.

 $t_J^I = k_J^I(s) + \sum_{I'=0}^{\infty} \sum_{J'=0}^{\infty} \int_{4m_{\pi}^2}^{\infty} ds' K_{JJ'}^{II'}(s,s') \text{Im} \, t_{J'}^{I'}(s')$ subtraction kernel functions polynomial *known analytically*

Limitations of Roy analysis:

- experimental knowledge of many partial waves in direct and crossed channels is required
- finite truncation limits the results to a given kinematical region
- o coupled-channel treatment is very complicated

Physical σ -pole (f_0 (500) resonance) position:

"Utilitarian" approaches

In practice, people prefer more simple approaches like

- \checkmark Breit-Wigner parametrizations (with Blatt-Weisskopf factors)
- K-matrix **very popular in the analyses of lattice data**
- \checkmark Bethe-Salpeter-like equations
- \checkmark and others...

It causes the nonphysical behavior – spurious poles can emerge!

 0.5

1.0

1.5

Re s

K-matrix

2.5

3.0

2.0

-pole in lattice QCD

$$
[t_J(s)]^{-1} = \frac{1}{p(s)^{2J}} K^{-1}(s) + I(s), \quad \text{Im } I(s) = -\rho(s).
$$

[Supplemental material from Briceño et al., PRL 2017]

1) Chew-Mandelstam phase-space, $I(s)$

a) $K(s) = \frac{g^2}{m^2}$ $\frac{y}{m^2-s}+c$ b) $K(s) = \frac{g^2}{m^2}$ m^2 –s c) $K(s) = \frac{g^2}{m^2}$ $\frac{g}{m^2-s}$ + as

2)
$$
K(s) = \frac{g^2}{m^2 - s} + c
$$
, $I(s) = -i \rho$

3) The K-matrix, weighted by a factor $(s - s_A)$ to take into account the Adler zero

a) $K(s) = (s - s_A) \frac{g^2}{m^2}$ $\frac{y}{m^2-s}$, with Chew-Mandelstam phase-space \overline{g} 2

b)
$$
K(s) = (s - s_A) \frac{g^2}{m^2 - s'}
$$
 with $I(s) = -i \rho$

4) A relativistic Breit-Wigner formula

5) An effective range expansion

only one parametrization has a dispersive ground: this fact can remarkably reduce the uncertainty!

- and -poles in lattice QCD

$$
[t_J(s)]^{-1} = \frac{1}{p(s)^{2J}} K^{-1}(s) + I(s), \quad \text{Im}\, I(s) = -\rho(s).
$$

[talk Rodas, Lattice 2022]

• Ongoing analysis of κ -pole by Mohler et al.

$$
m_\pi~=~200,280~\text{MeV}
$$

Dispersive representation for the S-wave amplitudes

- $\text{Im } t_J(s) = \rho(s) |t_J(s)|^2 \theta(s s_{th}),$
 $\text{Im } [t_J(s)]^{-1} = -\rho(s) \theta(s s_{th}),$
 $0 \leq \text{Im } t_J(s) \leq \frac{1}{\rho(s)},$ • Unitarity:
- Maximal analyticity: the partial-wave amplitude should satisfy the dispersion relation

 $t_0(s) = t_0(s_M) + \frac{s - s_M}{\pi} \int_L \frac{ds'}{s' - s_M} \frac{\text{Im } t_0(s')}{s' - s_M} + \frac{s - s_M}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s' - s_M} \frac{\rho(s') \, |t_0(s')|^2}{s' - s_M} + \frac{s - s_M}{s_B - s_M} \frac{g_B^2}{s_B - s_M}$ can be approximated by the conformal $\sum C_n \omega^n(s)$ variable series:

The good

- The correct and straight way to implement all the fundamental principles
- Can be easily extended to the couple-channel case

The bad

- Adler zero imposes a constraint on the conformal variable series: $t(s_A) = 0$

The ugly

- One needs to solve integral equation
- CDD ambiguity

Dispersive representation for the S-wave inverse amplitudes

• Due to the same cut structure (in a single-channel scattering case only!), the inverse partial-wave amplitude should also satisfy the similar dispersion relation:

$$
[t_0(s)]^{-1} = \left[[t_0(\tilde{s}_M)]^{-1} + \frac{s - \tilde{s}_M}{\pi} \int_L \frac{ds'}{s' - \tilde{s}_M} \frac{\text{Im}[t_0(s')]^{-1}}{s' - s} + \frac{s - \tilde{s}_M}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s' - \tilde{s}_M} \frac{-\rho(s')}{s' - s} + \frac{s - \tilde{s}_M}{s_A - \tilde{s}_M} \frac{g_A}{s - s_A} \right]
$$

can be approximated by the conformal
variable series as well:

$$
\sum_{n=0}^{\infty} C_n \omega^n(s)
$$
 (Adler zero)

- Simple formula no needs to solve integral equation
- Easy implementation of the Adler zeros

The bad and the ugly

- Cannot be extended to the coupled-channel case (left and right cuts mix)
- Inclusion of inelastic contributions can be made only phenomelogically

Left-hand cuts as conformal variable series

The idea is to express the subtraction constant together with the integrated left-hand cut discontinuity via the series of suitably constructed conformal variable $\omega(s)$

expansion point the lowest threshold in the crossed or channels

Dispersive Inverse Amplitude (DIA) method for J=0

Gathering all the ingredients together, we arrive to the following formula for inverse partial-wave amplitude:

$$
(t_0(s))^{-1} \simeq \sum_{n=0}^{\infty} C_n \omega^n(s) + \frac{s - \tilde{s}_M}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s' - \tilde{s}_M} \frac{-\rho(s')}{s' - s} + \frac{s - \tilde{s}_M}{s_A - \tilde{s}_M} \frac{g_A}{s - s_A}
$$

The main features:

- \checkmark Dispersive (Chew-Mandelstam) expression for the phase-space
- \checkmark Additive pole term which is responsible for the Adler zero
- \checkmark The conformal variable series is responsible for single-channel left-hand cut only

Let us compare it with the common parametrizations available in the literature…

DIA and common K-matrix parametrizations

$$
[t_0(s)]^{-1} \simeq \sum_{n=0}^{\infty} C_n \,\omega^n(s) + \frac{s - \tilde{s}_M}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s' - \tilde{s}_M} \frac{-\rho(s')}{s' - s} + \frac{s - \tilde{s}_M}{s_A - \tilde{s}_M} \frac{g_A}{s - s_A} \qquad \qquad \text{VS.} \qquad \text{Im } I(s) = -\rho(s) \qquad \text{Im } I(s) = -\rho(s)
$$

There are different variants in the literature how one parametrizes the K-marix:

1) Standard implementation
\n2) Standard implementation + Adler zero:
$$
K(s) = (s - s_A) \left(\frac{g}{m^2 - s} + \sum_n \gamma_n s^n \right)
$$
 [PDG,2020]
\n3) Standard implementation
\n+ Adler zero, + left-hand cut
\n
$$
K^{-1}(s) = \frac{m_{\pi}^2}{s - s_A} \left(\frac{2s_A}{m_{\pi} \sqrt{s}} + \sum_{n=0}^{\infty} C_n \omega^n(s) \right)
$$
 [Ynduran et al., 2007]
\n
$$
K^{-1}(s) = \frac{m_{\pi}^2}{s - s_A} \left(\sum_{n=0}^{\infty} C_n \omega^n(s) \right)
$$
 [Ynduran et al., 2007]
\n[Caprini et al., 2008]
\n[Caprini et al., 2008]

All of the above implementations are, in general, non-dispersive!

DIA and mIAM method

2) P-wave

$$
t_1^{\text{IAM}}(s) = \frac{\left[t_1^{\text{LO}}(s)\right]^2}{t_1^{\text{LO}}(s) - \left[t_1^{\text{NLO}}(s) - t_1^{\text{LO}}(s)\right]},
$$

- satisfies **both** dispersion relations, for inverse and for direct amplitude as well!

$\pi\pi \to \pi\pi$ and $\pi K \to \pi K$ scattering, $J=0$

$$
[t_0(s)]^{-1} \simeq \sum_{n=0}^{\infty} C_n \,\omega^n(s) + R(s, \tilde{s}_M) + \frac{s - \tilde{s}_M}{s_A - \tilde{s}_M} \frac{g_A}{s - s_A}
$$

$$
R(s, \tilde{s}_M) \equiv \frac{s - \tilde{s}_M}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s' - \tilde{s}_M} \frac{-\rho(s')}{s' - s}
$$

we perform the subtraction at the two-particle threshold, say $\tilde{s}_M = s_{th}$.

Adler zero was fixed by LO ChPT

$$
s_A^{I=0} = \frac{m_\pi^2}{2}, \quad s_A^{I=2} = 2 m_\pi^2
$$

$$
s_A^{I=3/2} = m_\pi^2 + m_K^2
$$

$$
s_A^{I=1/2} = \frac{1}{5} \left(m_\pi^2 + m_K^2 + 2 \sqrt{4 (m_K^2 - m_\pi^2)^2 + m_\pi^2 m_K^2} \right)
$$

60
\nRoy-like
\n10
\n
$$
\delta_0^{1/2}(\pi K \rightarrow \pi K)
$$

\n20
\n0
\n0
\n0.7
\n0.8
\n0.9
\n0.9
\n0.10
\n0.8
\n0.9
\n1.0
\n0.8
\n1.0

- 2 fit parameters, χ^2 /d.o.f. = 0.0

 $\delta^{\scriptscriptstyle{\perp}}_0$ 1/2 - 2 fit parameters: χ^2 /d.o.f. = 2.1, pole: $\sqrt{s_p}$ = 707 – i 246 MeV - 3 fit parameters: χ^2 /d.o.f. = 0.0, pole: $\sqrt{s_p}$ = 684 – i 312 MeV $-$ Roy pole: $\sqrt{s_p}$ = 648(7) – i 280(16) MeV $\boldsymbol{\delta^3_0}$ $3/2$

- 2 fit parameters, χ^2 /d.o.f. = 0.5

$\pi\pi \to \pi\pi$ and $\pi K \to \pi K$ scattering on a lattice, J=0

$$
[t_0(s)]^{-1} \simeq \sum_{n=0}^{\infty} C_n \,\omega^n(s) + R(s, \, \tilde{s}_M) + \frac{s - \tilde{s}_M}{s_A - \tilde{s}_M} \frac{g_A}{s - s_A}
$$

 $R(s, \tilde{s}_M) \equiv \frac{s - \tilde{s}_M}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s' - \tilde{s}_M} \frac{-\rho(s')}{s' - s}$

we perform the subtraction at the two-particle threshold, say $\tilde{s}_M = s_{th}$.

Adler zero was fixed by LO ChPT

$$
s_A^{I=0} = \frac{m_\pi^2}{2},
$$

$$
s_A^{I=1/2} = \frac{1}{5} \left(m_\pi^2 + m_K^2 + 2 \sqrt{4 \left(m_K^2 - m_\pi^2 \right)^2 + m_\pi^2 m_K^2} \right)
$$

DIA and chiral extrapolation

Let us consider the case of S-wave of $\pi\pi$ scattering \Box lattice data

Only two input parameters are required:

- 1. Adler zero s_A
- slope parameter g_A at the Adler zero

Fit parameters:
 $g_A = 0.56(9)$, $C_0 = 1.38(26)$,

The NLO ChPT parameters:

$$
g_{A,\text{NLO}} = \left(\frac{\mathrm{d}t_0^{\text{NLO}}(s)}{\mathrm{d}s}\bigg|_{s=s_A}\right)^{-1} = 0.45(3),
$$

$$
C_{0,\text{NLO}} = \left[t_0^{\text{NLO}}(s_{th})\right]^{-1} = 1.46(6).
$$

 \checkmark The fitted parameters are consistent with ChPT extrapolation!

Pole position:

$$
\sqrt{s_p} = 553^{+47}_{-54} - i 168^{+19}_{-15} \,\text{MeV}^{-1}
$$

DIA for higher spins, equal-mass case

The behavior of the amplitudes near the threshold:

 $t_I(s) \sim p(s)^{2J} \sqrt[m_1=m_2]{(s-s_{th})}^J$

Applying $J + 1$ subtractions, one can write the dispersion relation for the quantity

 $\overline{t_J(s)}$

arriving to

$$
\begin{aligned}\n\frac{1}{\left|f_1(s)\right|^{n-1}} &= 1: \quad [t_1(s)]^{-1} \simeq \frac{a}{s - s_{th}} + \sum_{n=0}^{\infty} C_n \omega^n(s) + R(s, s_{th}), \\
\frac{1}{\left|f_1(s)\right|^{n-1}} &= 2: \quad [t_2(s)]^{-1} \simeq \frac{a}{(s - s_{th})^2} + \frac{b}{s - s_{th}} + \sum_{n=0}^{\infty} C_n \omega^n(s) + R(s, s_{th}), \\
\frac{1}{\left|f_1(s)\right|^{n-1}} &= 2: \quad [t_2(s)]^{-1} \simeq \frac{a}{(s - s_{th})^2} + \frac{b}{s - s_{th}} + \sum_{n=0}^{\infty} C_n \omega^n(s) + R(s, s_{th}),\n\end{aligned}
$$

where
$$
R(s, \tilde{s}_M) \equiv \frac{s - \tilde{s}_M}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s' - \tilde{s}_M} \frac{-\rho(s')}{s' - s}
$$

DIA for higher spins, nonequal-mass case

It is possible to write down the general formula for spin *,* adopting *subtractions in the dispersion relation :*

$$
\left[[t_J(s)]^{-1} = \frac{1}{p^{2J}(s)} \left(\sum_{i=0}^{J-1} a_i (s - s_M)^i + (s - s_M)^J \sum_{n=0}^{\infty} C_n \omega^n(s) + (s - s_M)^J R_{pJ}(s, s_M) \right) \right]
$$

 $R_{pJ}(s,s_M) = \frac{s-s_M}{\pi} \int_{R} \frac{ds'}{s'-s_M} \frac{-\rho(s')}{s'-s} \frac{p^{2J}(s')}{(s'-s_M)^J}$ where

Particular case

$$
\frac{1}{p} \quad J = 1: \qquad [t_1(s)]^{-1} = \frac{a_0}{p^2(s)} + \frac{s - s_M}{p^2(s)} \sum_{n=0}^{\infty} C_n \omega^n(s) + \frac{s - s_M}{p^2(s)} R_{p1}(s, s_M)
$$

Alternative form (applying two subtractions at the different points):

$$
\int_{1}^{1} f = 1: \qquad [t_{1}(s)]^{-1} = \frac{a+b s}{p^{2}(s)} + \sum_{n=0}^{\infty} C_{n} \omega^{n}(s) + R(s, 0)
$$

\nwith an additional constraint
$$
\sum_{n=0}^{\infty} C_{n} \omega^{n}(s = 0) = 0
$$

Conclusions

- Imroved parametrization for inverse scattering amplitudes for spinless particles was derived
- Derivation from the general principles unitarity, maximal analiticity
- The test on the well-studied cases for $\pi\pi \to \pi\pi$ and $\pi K \to \pi K$ scattering was performed

- Ongoing collaboration with Lattice group (Mohler et al.)
- Determination of LEC (up to NNLO) using S and P wave lattice data

Thank you for attention!