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Introduction
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 The recent discoveries of exotic hadron resonances, done by LHCb, BESIII, COMPASS, Belle and other 
collaborations, excited a strong interest in hadron spectroscopy

 The significant progress in lattice QCD studies of poorly known hadronic states is also observed

The correct identification of resonance parameters 
requires the search for poles 
of the S-matrix in the complex plane. 

It is particularly important when

• there is an interplay between several inelastic 
channels

• the pole is lying very deep in the complex plane



S-matrix constraints and Roy analysis
The fundamental constraints of the theory of S-matrix 

• Analyticity (causality)

• Unitarity

• Crossing symmetry
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Roy (Roy-Steiner) analysis - the most 
rigorous way to implement all constraints.

subtraction
polynomial 

kernel functions 
known analytically 

Physical 𝜎-pole (𝑓0(500) resonance) position: 

[PDG 2022]

PDG, 1996-2000

[taken from R. Kaminski talk]

[Roy, 1971]

[Colangelo et al., 2001]

[Caprini et al., 2006]

[Garcia-Martin et al., 2011]

Limitations of Roy analysis:

o experimental knowledge of many partial waves in 
direct and crossed channels is required

o finite truncation limits the results to a given 
kinematical region

o coupled-channel treatment is very complicated 
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In practice, people prefer more simple approaches like

 Breit-Wigner parametrizations (with Blatt-Weisskopf factors)

 K-matrix – very popular in the analyses of lattice data

 Bethe-Salpeter-like equations

 and others… 

Only unitarity is imposed

“Utilitarian” approaches

It causes the nonphysical behavior –
spurious poles can emerge!



𝝈-pole in lattice QCD 
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1) Chew-Mandelstam phase-space, 𝐼 𝑠
a) 𝐾 𝑠 =

𝑔2

𝑚2−𝑠
+ 𝑐

b) 𝐾 𝑠 =
𝑔2

𝑚2−𝑠

c) 𝐾 𝑠 =
𝑔2

𝑚2−𝑠
+ 𝑎s

2) 𝐾 𝑠 =
𝑔2

𝑚2−𝑠
+ 𝑐, 𝐼 𝑠 = −𝑖 𝜌

3) The K-matrix, weighted by a factor 𝑠 − 𝑠𝐴 to take 
into account the Adler zero

a) 𝐾 𝑠 = (𝑠 − 𝑠𝐴)
𝑔2

𝑚2−𝑠
, with Chew-Mandelstam 

phase-space
b) 𝐾 𝑠 = 𝑠 − 𝑠𝐴

𝑔2

𝑚2−𝑠
, with 𝐼 𝑠 = −𝑖 𝜌

4) A relativistic Breit-Wigner formula

5) An effective range expansion
only one parametrization has a dispersive ground:
this fact can remarkably reduce the uncertainty!

[Supplemental material from Briceño et al., PRL 2017]

𝜎-pole from lattice at 𝑚𝜋 = 236 MeV



𝝈- and 𝜿-poles in lattice QCD 
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[talk Rodas, Lattice 2022 ]

𝑚𝜋 = 200, 280 MeV

• Ongoing analysis of 𝝈-pole 
by HadSpec

• Ongoing analysis of 𝜿 -pole 
by Mohler et al. 



Dispersive representation for the S-wave amplitudes
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• Unitarity:

• Maximal analyticity: the partial-wave amplitude should satisfy the dispersion relation

can be approximated 
by the conformal 
variable series:

The good

- The correct and straight way 
to implement all the 
fundamental principles

- Can be easily extended to 
the couple-channel case

The bad

- Adler zero imposes 
a constraint on the 
conformal variable 
series: 𝑡(𝑠𝐴) = 0

The ugly

- One needs to 
solve integral 
equation

- CDD ambiguity



Dispersive representation for the S-wave inverse amplitudes
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• Due to the same cut structure (in a single-channel scattering case only!), the inverse 
partial-wave amplitude should also satisfy the similar dispersion relation:

Possible pole term 
(Adler zero)

The good

- Simple formula – no needs 
to solve integral equation

- Easy implementation of 
the Adler zeros

The bad and the ugly

- Cannot be extended to the coupled-channel case (left and 
right cuts mix)

- Inclusion of inelastic contributions can be made only 
phenomelogically

can be approximated 
by the conformal 

variable series as well:
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Left-hand cuts as conformal variable series

expansion point

The idea is to express the subtraction constant together with the integrated left-hand cut discontinuity via 
the series of suitably constructed conformal variable 𝜔(𝑠)

the lowest threshold in the 
crossed 𝑡 or 𝑢 channels
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Gathering all the ingredients together, we arrive to the following formula for inverse partial-wave amplitude:

The main features:

 Dispersive (Chew-Mandelstam) expression for the phase-space

 Additive pole term which is responsible for the Adler zero 

 The conformal variable series is responsible for single-channel left-hand cut 
only

Dispersive Inverse Amplitude (DIA) method for J=0

Let us compare it with the common parametrizations available in the 
literature…
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DIA and common K-matrix parametrizations

There are different variants in the literature how one parametrizes the K-marix:

2) Standard implementation + Adler zero:

3) Standard implementation
+ Adler zero, + left-hand cut

alternatively,

1) Standard implementation

All of the above implementations are, in general, non-dispersive!

[PDG,2020]

[Briceño et al., 2017]

[Yndurain et al., 2007]

[Pelaez et al., 2016]

[Caprini et al., 2008]

VS.
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DIA and mIAM method

1) S-wave

2) P-wave

- satisfies the D.R. for inverse amplitude

- does NOT satisfiy the D.R. for 
direct amplitude – it has spurious 
pole on the first Riemann sheet!

- satisfies both dispersion relations, for inverse 
and for direct amplitude as well!



𝝅𝝅 → 𝝅𝝅 and 𝝅𝑲 → 𝝅𝑲 scattering, 𝐽 = 0
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𝜹𝟎
𝟎

- 2 fit parameters: 𝜒2/d.o.f. = 0.4, 
pole : 𝑠𝑝 = 468(8) − i 239(4) MeV

- Roy pole: 𝑠𝑝 = 457−13
+14 − i 279−7

+11 MeV

𝜹𝟎
𝟐

- 2 fit parameters, 𝜒2/d.o.f. = 0.0

𝜹𝟎
1/2

- 2 fit parameters: 𝜒2/d.o.f. = 2.1, 
pole: 𝑠𝑝 = 707 − i 246 MeV

- 3 fit parameters: 𝜒2/d.o.f. = 0.0, 
pole: 𝑠𝑝 = 684 − i 312 MeV

- Roy pole: 𝑠𝑝 = 648 7 − i 280 16 MeV

𝜹𝟎
3/𝟐

- 2 fit parameters, 𝜒2/d.o.f. = 0.5

Adler zero was fixed by LO ChPT

we perform the subtraction at the 
two-particle threshold, say ǁ𝑠𝑀 = 𝑠𝑡ℎ.



𝝅𝝅 → 𝝅𝝅 and 𝝅𝑲 → 𝝅𝑲 scattering on a lattice, J=0
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- 2 fit parameters 

- 𝜒2/d.o.f. = 0.8

- pole: 𝑠𝑝 = 554 − i 170 MeV

𝑚𝜋 = 236 𝑀𝑒𝑉 𝑚𝜋 = 239 𝑀𝑒𝑉

Adler zero was fixed by LO ChPT

we perform the subtraction at the 
two-particle threshold, say ǁ𝑠𝑀 = 𝑠𝑡ℎ.

- 2 fit parameters 

- 𝜒2/d.o.f. = 0.4

- pole:  𝑠𝑝 = 764 − i 278 MeV



DIA and chiral extrapolation
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Only two input parameters are required:
1. Adler zero 𝑠𝐴
2. slope parameter 𝑔𝐴 at the Adler zero

Let us consider the case of S-wave of 𝜋𝜋 scattering lattice data

Fit parameters:

The NLO ChPT parameters:

Pole position:

 The fitted parameters are consistent with 
ChPT extrapolation!

Adler zero ChPT
extrapolation

scattering 
amplitude 
(Real part)

pole position
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DIA for higher spins, equal-mass case

𝐽 = 1:

𝐽 = 2:

The behavior of the amplitudes near the threshold: 

Applying 𝐽 + 1 subtractions, one can write the 
dispersion relation for the quantity

arriving to

where 

𝜹𝟏
𝟏

- 2 fit parameters: 𝜒2/d.o.f. = 3.0, 
pole: 𝑠𝑝 = 758 − i 73 MeV

- 3 fit parameters: 𝜒2/d.o.f. = 0.9, 
pole: 𝑠𝑝 = 762 − i 71 MeV

- Roy pole: 𝑠𝑝 = 763.7−1.5
+1.7 − i 73.2−1.1

+1.0 MeV

𝜹𝟐
𝟎

- 2 fit parameters, , 𝜒2/d.o.f. = 1.1
pole: 𝑠𝑝 = 1261 − i 94 MeV

- Roy pole: 𝑠𝑝 = 1267.3−0.9
+0.9 − i 87(9) MeV

… and so on …
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DIA for higher spins, nonequal-mass case

𝜹𝟏
𝟏/𝟐

- 2 fit parameters: 𝜒2/d.o.f. = 0.7, 
pole: 𝑠𝑝 = 889 − i 27 MeV

- Roy pole: 𝑠𝑝 = 890 2 − i 25.6(1.2) MeV

It is possible to write down the general formula for spin 𝐽, 
adopting 𝐽 subtractions in the dispersion relation : 

where

𝐽 = 1:

Alternative form (applying two subtractions at the different points):

𝐽 = 1:

Particular case

with an additional constraint



Conclusions

• Imroved parametrization for inverse scattering amplitudes for spinless particles was 
derived

• Derivation from the general principles – unitarity, maximal analiticity
• The test on the well-studied cases for 𝜋𝜋 → 𝜋𝜋 and 𝜋𝐾 → 𝜋𝐾 scattering was 

performed

• Ongoing collaboration with Lattice group (Mohler et al.)
• Determination of LEC (up to NNLO) using S and P wave lattice data
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