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Introduction
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 The recent discoveries of exotic hadron resonances, done by LHCb, BESIII, COMPASS, Belle and other 
collaborations, excited a strong interest in hadron spectroscopy

 The significant progress in lattice QCD studies of poorly known hadronic states is also observed

The correct identification of resonance parameters 
requires the search for poles 
of the S-matrix in the complex plane. 

It is particularly important when

• there is an interplay between several inelastic 
channels

• the pole is lying very deep in the complex plane



S-matrix constraints and Roy analysis
The fundamental constraints of the theory of S-matrix 

• Analyticity (causality)

• Unitarity

• Crossing symmetry
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Roy (Roy-Steiner) analysis - the most 
rigorous way to implement all constraints.

subtraction
polynomial 

kernel functions 
known analytically 

Physical 𝜎-pole (𝑓0(500) resonance) position: 

[PDG 2022]

PDG, 1996-2000

[taken from R. Kaminski talk]

[Roy, 1971]

[Colangelo et al., 2001]

[Caprini et al., 2006]

[Garcia-Martin et al., 2011]

Limitations of Roy analysis:

o experimental knowledge of many partial waves in 
direct and crossed channels is required

o finite truncation limits the results to a given 
kinematical region

o coupled-channel treatment is very complicated 
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In practice, people prefer more simple approaches like

 Breit-Wigner parametrizations (with Blatt-Weisskopf factors)

 K-matrix – very popular in the analyses of lattice data

 Bethe-Salpeter-like equations

 and others… 

Only unitarity is imposed

“Utilitarian” approaches

It causes the nonphysical behavior –
spurious poles can emerge!



𝝈-pole in lattice QCD 
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1) Chew-Mandelstam phase-space, 𝐼 𝑠
a) 𝐾 𝑠 =

𝑔2

𝑚2−𝑠
+ 𝑐

b) 𝐾 𝑠 =
𝑔2

𝑚2−𝑠

c) 𝐾 𝑠 =
𝑔2

𝑚2−𝑠
+ 𝑎s

2) 𝐾 𝑠 =
𝑔2

𝑚2−𝑠
+ 𝑐, 𝐼 𝑠 = −𝑖 𝜌

3) The K-matrix, weighted by a factor 𝑠 − 𝑠𝐴 to take 
into account the Adler zero

a) 𝐾 𝑠 = (𝑠 − 𝑠𝐴)
𝑔2

𝑚2−𝑠
, with Chew-Mandelstam 

phase-space
b) 𝐾 𝑠 = 𝑠 − 𝑠𝐴

𝑔2

𝑚2−𝑠
, with 𝐼 𝑠 = −𝑖 𝜌

4) A relativistic Breit-Wigner formula

5) An effective range expansion
only one parametrization has a dispersive ground:
this fact can remarkably reduce the uncertainty!

[Supplemental material from Briceño et al., PRL 2017]

𝜎-pole from lattice at 𝑚𝜋 = 236 MeV



𝝈- and 𝜿-poles in lattice QCD 

6

[talk Rodas, Lattice 2022 ]

𝑚𝜋 = 200, 280 MeV

• Ongoing analysis of 𝝈-pole 
by HadSpec

• Ongoing analysis of 𝜿 -pole 
by Mohler et al. 



Dispersive representation for the S-wave amplitudes
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• Unitarity:

• Maximal analyticity: the partial-wave amplitude should satisfy the dispersion relation

can be approximated 
by the conformal 
variable series:

The good

- The correct and straight way 
to implement all the 
fundamental principles

- Can be easily extended to 
the couple-channel case

The bad

- Adler zero imposes 
a constraint on the 
conformal variable 
series: 𝑡(𝑠𝐴) = 0

The ugly

- One needs to 
solve integral 
equation

- CDD ambiguity



Dispersive representation for the S-wave inverse amplitudes
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• Due to the same cut structure (in a single-channel scattering case only!), the inverse 
partial-wave amplitude should also satisfy the similar dispersion relation:

Possible pole term 
(Adler zero)

The good

- Simple formula – no needs 
to solve integral equation

- Easy implementation of 
the Adler zeros

The bad and the ugly

- Cannot be extended to the coupled-channel case (left and 
right cuts mix)

- Inclusion of inelastic contributions can be made only 
phenomelogically

can be approximated 
by the conformal 

variable series as well:
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Left-hand cuts as conformal variable series

expansion point

The idea is to express the subtraction constant together with the integrated left-hand cut discontinuity via 
the series of suitably constructed conformal variable 𝜔(𝑠)

the lowest threshold in the 
crossed 𝑡 or 𝑢 channels
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Gathering all the ingredients together, we arrive to the following formula for inverse partial-wave amplitude:

The main features:

 Dispersive (Chew-Mandelstam) expression for the phase-space

 Additive pole term which is responsible for the Adler zero 

 The conformal variable series is responsible for single-channel left-hand cut 
only

Dispersive Inverse Amplitude (DIA) method for J=0

Let us compare it with the common parametrizations available in the 
literature…



11

DIA and common K-matrix parametrizations

There are different variants in the literature how one parametrizes the K-marix:

2) Standard implementation + Adler zero:

3) Standard implementation
+ Adler zero, + left-hand cut

alternatively,

1) Standard implementation

All of the above implementations are, in general, non-dispersive!

[PDG,2020]

[Briceño et al., 2017]

[Yndurain et al., 2007]

[Pelaez et al., 2016]

[Caprini et al., 2008]

VS.
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DIA and mIAM method

1) S-wave

2) P-wave

- satisfies the D.R. for inverse amplitude

- does NOT satisfiy the D.R. for 
direct amplitude – it has spurious 
pole on the first Riemann sheet!

- satisfies both dispersion relations, for inverse 
and for direct amplitude as well!



𝝅𝝅 → 𝝅𝝅 and 𝝅𝑲 → 𝝅𝑲 scattering, 𝐽 = 0
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𝜹𝟎
𝟎

- 2 fit parameters: 𝜒2/d.o.f. = 0.4, 
pole : 𝑠𝑝 = 468(8) − i 239(4) MeV

- Roy pole: 𝑠𝑝 = 457−13
+14 − i 279−7

+11 MeV

𝜹𝟎
𝟐

- 2 fit parameters, 𝜒2/d.o.f. = 0.0

𝜹𝟎
1/2

- 2 fit parameters: 𝜒2/d.o.f. = 2.1, 
pole: 𝑠𝑝 = 707 − i 246 MeV

- 3 fit parameters: 𝜒2/d.o.f. = 0.0, 
pole: 𝑠𝑝 = 684 − i 312 MeV

- Roy pole: 𝑠𝑝 = 648 7 − i 280 16 MeV

𝜹𝟎
3/𝟐

- 2 fit parameters, 𝜒2/d.o.f. = 0.5

Adler zero was fixed by LO ChPT

we perform the subtraction at the 
two-particle threshold, say ǁ𝑠𝑀 = 𝑠𝑡ℎ.



𝝅𝝅 → 𝝅𝝅 and 𝝅𝑲 → 𝝅𝑲 scattering on a lattice, J=0
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- 2 fit parameters 

- 𝜒2/d.o.f. = 0.8

- pole: 𝑠𝑝 = 554 − i 170 MeV

𝑚𝜋 = 236 𝑀𝑒𝑉 𝑚𝜋 = 239 𝑀𝑒𝑉

Adler zero was fixed by LO ChPT

we perform the subtraction at the 
two-particle threshold, say ǁ𝑠𝑀 = 𝑠𝑡ℎ.

- 2 fit parameters 

- 𝜒2/d.o.f. = 0.4

- pole:  𝑠𝑝 = 764 − i 278 MeV



DIA and chiral extrapolation
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Only two input parameters are required:
1. Adler zero 𝑠𝐴
2. slope parameter 𝑔𝐴 at the Adler zero

Let us consider the case of S-wave of 𝜋𝜋 scattering lattice data

Fit parameters:

The NLO ChPT parameters:

Pole position:

 The fitted parameters are consistent with 
ChPT extrapolation!

Adler zero ChPT
extrapolation

scattering 
amplitude 
(Real part)

pole position
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DIA for higher spins, equal-mass case

𝐽 = 1:

𝐽 = 2:

The behavior of the amplitudes near the threshold: 

Applying 𝐽 + 1 subtractions, one can write the 
dispersion relation for the quantity

arriving to

where 

𝜹𝟏
𝟏

- 2 fit parameters: 𝜒2/d.o.f. = 3.0, 
pole: 𝑠𝑝 = 758 − i 73 MeV

- 3 fit parameters: 𝜒2/d.o.f. = 0.9, 
pole: 𝑠𝑝 = 762 − i 71 MeV

- Roy pole: 𝑠𝑝 = 763.7−1.5
+1.7 − i 73.2−1.1

+1.0 MeV

𝜹𝟐
𝟎

- 2 fit parameters, , 𝜒2/d.o.f. = 1.1
pole: 𝑠𝑝 = 1261 − i 94 MeV

- Roy pole: 𝑠𝑝 = 1267.3−0.9
+0.9 − i 87(9) MeV

… and so on …
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DIA for higher spins, nonequal-mass case

𝜹𝟏
𝟏/𝟐

- 2 fit parameters: 𝜒2/d.o.f. = 0.7, 
pole: 𝑠𝑝 = 889 − i 27 MeV

- Roy pole: 𝑠𝑝 = 890 2 − i 25.6(1.2) MeV

It is possible to write down the general formula for spin 𝐽, 
adopting 𝐽 subtractions in the dispersion relation : 

where

𝐽 = 1:

Alternative form (applying two subtractions at the different points):

𝐽 = 1:

Particular case

with an additional constraint



Conclusions

• Imroved parametrization for inverse scattering amplitudes for spinless particles was 
derived

• Derivation from the general principles – unitarity, maximal analiticity
• The test on the well-studied cases for 𝜋𝜋 → 𝜋𝜋 and 𝜋𝐾 → 𝜋𝐾 scattering was 

performed

• Ongoing collaboration with Lattice group (Mohler et al.)
• Determination of LEC (up to NNLO) using S and P wave lattice data
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