Gravitational form factor and D-term of hydrogen-like atoms in QED

Yizhuang Liu, Jagiellonian University

Excited QCD 2022

The talk is based on the recent work with Xiangdong-Ji:

Gravitational Tensor-Monopole Moment of Hydrogen Atom To Order $O(\alpha)$. Arxiv: 2208.05029.

Outline

- Energy Momentum Tensor and mass distribution of boundstates.
- EMT form-factor for hydrogen-like atom: scale separation, IR sensitivity and NRQED.
- EMT form-factor in NRQED.
- Results and discussion.

Energy Momentum Tensor (EMT)

- Energy-momentum tenor (EMT) is not an unfamiliar object.
- 1. $T^{\mu\nu}(x)$ describes the distribution of mass and momentum flow in many systems. Such as:
- Classical continuum matter. σ^{ij} called stress tensor. Often decomposed further into pressure (trace) and shear-force (traceless).
- Classical electromagnetic dynamics. T^{0i} is the famous Poynting vector. T^{ij} is the famous Maxwell stress tensor.

EMT in QFT.

- In QFT, $T^{\mu\nu}(x)$ is more subtle.
- 1. Formally as Noether's currents of space-time translation symmetry.
- 2. $T^{00}(x)$: the energy density. $T^{0i}(x)$ the momentum density. $T^{ij}(x)$: momentum current density. $\partial_{\mu}T^{\mu\nu} = 0$.
- 3. Ambiguity exists. Even for the `canonical" one, explicit construction differs in regularization schemes. Meaning: DR vs Lattice vs Pauli-Vilas, the same renormalized $T^{\mu\nu}$ looks quite different in terms of bare operators.

Canonical EMT in practical QFT

• The canonical EMT for gauge theory (QED or QCD) in DR.

1.
$$T^{\mu\nu} = -F^{\mu\rho}F^{\nu}_{\rho} + \frac{1}{4}g^{\mu\nu}F^{2} + \bar{\psi}i\gamma^{(\mu}D^{\nu)}\psi$$
.

- 2. Gluon and quark parts are not RG invariant by themselves.
- 3. $T^{\mu\nu} = T^{\mu\nu}_{twist-2} + \frac{g^{\mu\nu}}{4-2\epsilon} \left(m\bar{\psi}\psi \frac{2\epsilon}{4-2\epsilon} F^2 \right)$ decomposed into traceless and trace-full parts.
- 4. $T^{\mu}_{\mu} = m \, \bar{\psi} \psi + \left(\frac{\beta}{2g} F^2 + m \gamma_m \bar{\psi} \psi \right)$. The trace-anomaly.
- 5. $T^{00}(x)$: mass decomposition. Ambiguity & scheme & scale.

Hadronic EMT form factor.

- The EMT form factor of spin- $\frac{1}{2}$ particle $(q = P' P, \overline{P} = \frac{P+P'}{2})$
- $\bar{u}(P') \left(\frac{A(q)\gamma^{(\mu}\bar{P}^{\nu)} + B(q)}{A(q)\gamma^{(\mu}\bar{P}^{\nu)} + B(q)} \frac{\bar{P}^{(\mu}i\sigma^{\nu)\alpha}q_{\alpha}}{2M} + C(q)(q^{\mu}q^{\nu} g^{\mu\nu}q^{2}) \right) u(P)$
 - 1. The Mass, Spin form factors. A(0) = B(0) = 1. Mass and spin sum-rule.
 - 2. What about C(0)? This is called the D-term and remains unknown.
 - 3. Is C(0) always negative due to stability?

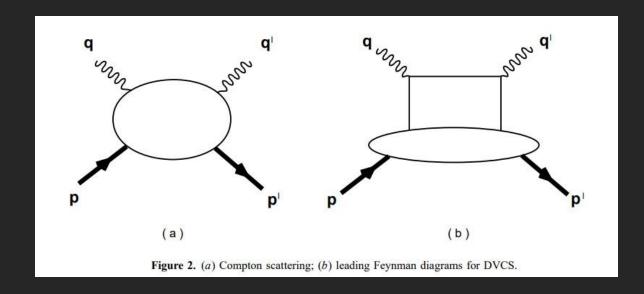
hep-ph/9609381, Ji hep-ph/9807358, Ji hep-ph/0307382, Diehl

- Where the EMT form factor can be probed?
- 1. Twist-two parts. First moment of the Generalized parton distributions (GPD). $F(x, \xi, q) \sim H + E$.

2.
$$\int_{-1}^{1} x \, H_g(x, \xi, q) = A_g(q) + (2\xi)^2 C_g(q),$$
$$\int_{-1}^{1} x \, E_g(x, \xi, q) = A_g(q) - (2\xi)^2 C_g(q). \text{ And similar for quark.}$$

- 3. Can be probed in DVCS, where $\xi = -\frac{q^+}{2 \bar{P}^+}$ is called the skewness.
- 4. Near threshold J/ψ production: Clue to C(0)?

DVCS and vector meson production



In the Bjorken limit, the DVCS amplitudes factorizes into GPDs and Hard kernels.

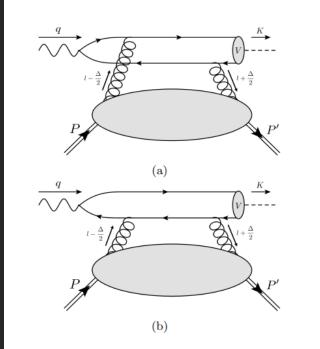
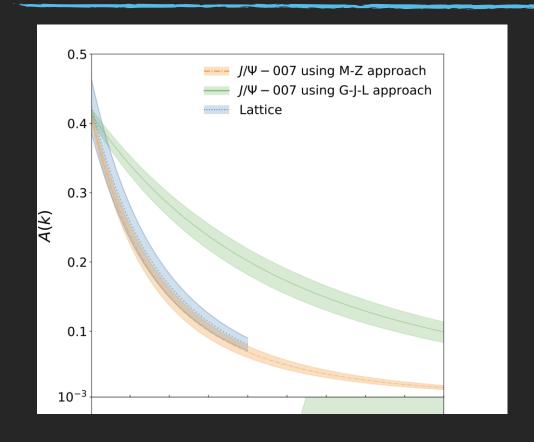


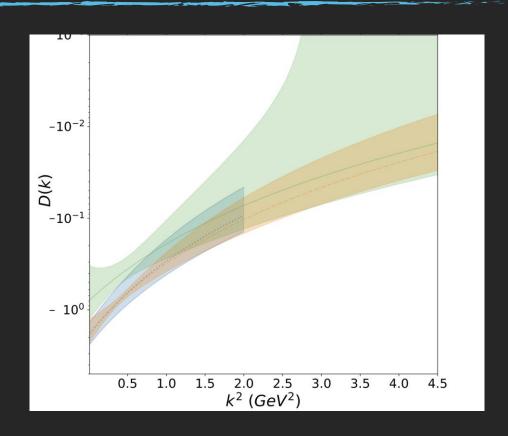
FIG. 4: Examples of leading Feynman diagrams that contribute to heavy vector meson photoproduction.

The vector meson production can also be used to probe GPDs. Near threshold may probe $\xi \sim 1$ region.

Threshould J/Ψ production and EMT form factor



Extraction of the proton A form factor based on various approaches vs Lattice.

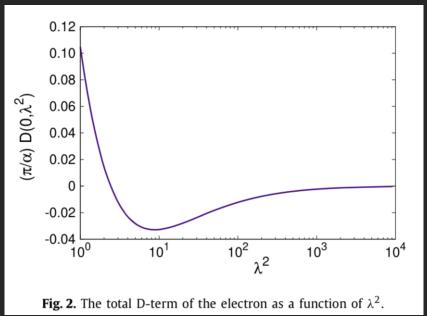


Extraction of the proton D = 4C form factor.

PhysRevD.103.096010, Guo, Ji, Liu PhysRevD.106.086004, Mamo&Zahed

EMT form factor and Sign of C(0): clue from QED?

- Despite progress, uncertainly still large for C(0) and its physical meaning. Is C(0) always negative due to stability? hep-ph/9902451, Polyakov&Weiss
- Insights from QED will be helpful.
- The C-form factor for single electron has been used as an example.



The D-term of single electron is negative for small photon mass.

Figure from Metz&Pasquini&Rodini Phys.Lett.B 820 (2021) 136501, Metz&Pasquini&Rodini Phys. Rev. D 15 (1977) 538, Milton,

However, single electron is not bound state.

But hydrogen atom is

Outline

- Energy Momentum Tensor and mass distribution of boundstates.
- EMT form-factor for hydrogen-like atom: scale separation, IR sensitivity and NRQED.
- EMT form-factor in NRQED.
- Results and discussion.

Bound states in QED: the microscopic theory

- The most famous bound state in QFT: the hydrogen atom.
- Field theoretical approach: heavy proton / dressed-Dirac theory.
- 1. $\mathcal{L} = \overline{N}iD^0N + \mathcal{L}_{QED}$. Bethe-Salpeter approach.
- 2. $\mathcal{L} = -e\bar{\psi}\gamma^{\mu}\psi\mathcal{A}_{\mu} + \mathcal{L}_{QED}$. $\mathcal{A}^{\mu} = \frac{e}{4\pi|\vec{r}|}\delta^{\mu,0}$: the static Coulomb field of the proton.
- 3. Can be shown to be equivalent.

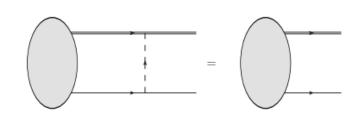


FIG. 1: The Bethe-Salpeter equation for the wave function Φ denoted by the oval blob. Double line represents propagator of proton field and single line represents the electron propagator. The dashed line represents the exchange of a Coulomb photon.

Bound states in QED: the microscopic theory

4. Renormalized using the same $Z_1 = Z_2$ and Z_3 as the free QED.

$$\delta \mathcal{L} = (Z_1 - 1)\bar{\psi}_R(i\gamma \cdot \partial - m)\psi_R - e(Z_1 - 1)\bar{\psi}_R\gamma^{\mu}\psi(A_{\mu,R} + \mathcal{A}_{\mu}) - \delta_m m Z_1 \bar{\psi}_R \psi_R - \frac{Z_3 - 1}{4} F_R^{\mu\nu} F_{\mu\nu,R} - \frac{Z_3 - 1}{2} F_R^{\mu\nu} \mathcal{F}_{\mu\nu} ,$$

- 5. The free theory defined by the complete set of solutions of Dirac equation in the background field.
- 6. Radiative correction added perturbatively in terms of standard Feynman rules. Main difference: the Coulomb-Dirac propagator.

Bound states in QED: the microscopic theory

4. Example: self-energy correction to bound-state.

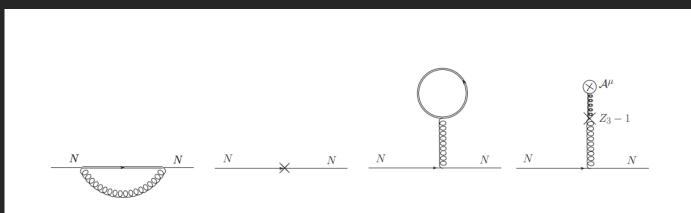


Figure 4: The Feynman diagram for the one-loop electron self energy. The double lines are dressed electron propagators and the crosses are counter terms. They contribute to the energy shift δE_N . Notice that the forth diagram corresponds to the counter term $\frac{Z_3-1}{2}F^{\mu\nu}\mathcal{F}_{\mu\nu}$ that couples the background and radiative photon fields.

5. In general, analytic calculation is very difficult.

Scale separation and NRQED

- However, when $\alpha \ll 1$, simplification occurs due to the emergent scale separation of the bound states:
- 1. The soft scale $k_s \sim \alpha m_e$. The size of the NR wave function.
- 2. The ultra-soft scale $k_{us} \sim \alpha^2 m_e$. The binding energy/kinematic energy.
- 3. The UV scale m_e . The electron mass.
- When expanded in the scale separations $\frac{\alpha m_e}{m_e}$ or $\frac{\alpha^2 m_e}{m_e}$, expression simplifies a lot. Power & log in renormalizable theory.
- Similar in spirit to twist expansion/OPE in high-energy limit.

Scale separation and NRQED

Caswell/Lepage, Phys. Lett. B 167, 437. Labelle, Phys. Rev. D 58, 093013. Pineda and Soto, Nucl. Phys. B Proc. Suppl. 64,428

- The NRQED is the modern way to organize this expansion .
 One needs
- 1. NRQED Lagrangian in terms of effective fields:

$$\mathcal{L} = \Psi^{\dagger} \left(i D^0 + \frac{\vec{D}^2}{2m} - \frac{c_F e}{2m} \vec{\sigma} \cdot \vec{B} \right) \Psi - \frac{1}{4} F^2 + \mathcal{O}(\frac{1}{m^2})$$

- 2. The matching coefficients c_F and others matches the UV of IR to the IR of UV. "Splitting of Logarithms".
- 3. For individual operators, matching through local counter-terms.

EMT for NRQED

• One can construct the "tree-level" EMT in NRQED:

$$T_{\text{tree}}^{ij} = T_e^{ij} + T_{\gamma}^{ij} + T_{\gamma p}^{ij} + T_p^{ij}$$

1.
$$T_e^{ij} = -\frac{1}{4m} \Psi^{\dagger} D^i D^j \Psi - \frac{1}{4m} D^i D^j \Psi^{\dagger} \Psi + \frac{1}{8m} (D^{(i} \Psi)^{\dagger} D^{j)} \Psi.$$

- 2. T_{ν}^{ij} is the standard photon EMT.
- 3. $T_{\gamma p}^{ij} = \delta^{ij} \nabla V_p \cdot \nabla V_e \partial^i V_p \partial^j V_e \partial^j V_p \partial^i V_e$ is the interference between the Coulomb fields of electron and proton.
- 4. $\nabla^2 V_e = e \Psi^{\dagger} \Psi$ is the Coulomb field of the electron. $V_p = \frac{e}{4\pi r}$.

EMT for NRQED

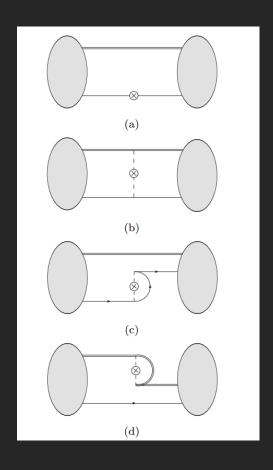
- 5. One can show that the above T_{tree}^{ij} is conserved in symmetric bound-states using EOM.
- 6. However, to match to the T^{ij} in QED, local counter-terms are required.
- In this work we calculate to order $\frac{\alpha}{m}$. At this order, one needs only one counter-term

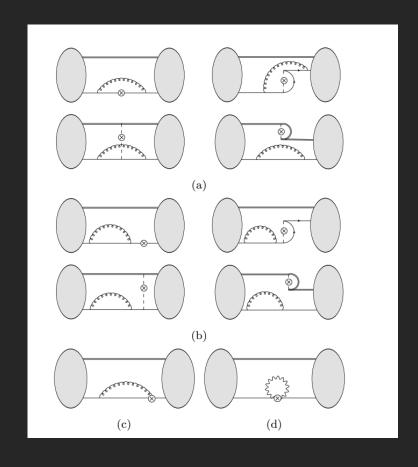
$$T_{NRQED}^{ij} = T_{tree}^{ij} + d_0 \left(\partial^i \partial^j - \delta^{ij} \partial^2\right) \Psi^{\dagger} \Psi + \mathcal{O}\left(\frac{\alpha}{m^2}\right).$$

1. To obtain the matching coefficient d_0 . One calculates using Free-NRQED and match to QED.

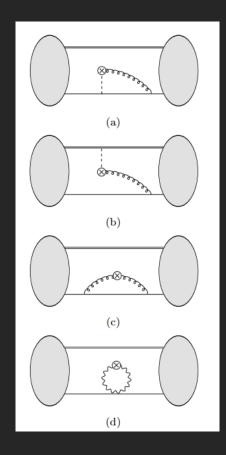
Reason: Free NRQED and dressed NRQED shares the same UV.

- 2. Combine d_0 with bound-state calculation to get full result.
- 3. DR with $D = 3 2\epsilon$ is adopted consistently. Coulomb gauge is chosen.
- 4. Power-counting in α eliminates all the fermionic diagrams.





The one-loop fermionic diagrams.



The photonic diagrams.

• An example of power-counting in α

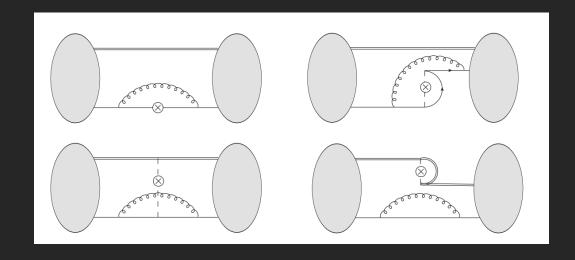


Fig. (6a) in 2208.05029

$$\langle T_0^{ij} \rangle_{6a}(\vec{q}) = e^2 \mu^{2\epsilon} \sum_{M,M'} \int \frac{d^D \vec{k}}{(2\pi)^D} \frac{(1 - \frac{1}{D}) \vec{v}_{0M'}(\vec{k}) \cdot \vec{v}_{M0}(\vec{k})}{(E_0 - |\vec{k}| - E_M)(E_0 - |\vec{k}| - E_{M'}) 2|\vec{k}|} \langle M' | T_0^{ij}(\vec{q}) | M \rangle ,$$
(64)

where the $T_0^{ij}(\vec{q})$ is defined in Eq. (62), including the proton part when M = M'. It is easy to see that for D=3, when $|\vec{k}|=\mathcal{O}(\alpha m_e)$ or $|\vec{k}|=\mathcal{O}(\alpha^2 m_e)$, the two energy denominators and one phase-space measure $2|\vec{k}|$ for the photon contributes to $(\alpha m_e)^{-3}$ or $(\alpha m_e)^{-6}$, which is always canceled by the integration measure $\int d^3\vec{k} = (\alpha m_e)^3$ or $(\alpha m_e)^6$, respectively. The two formfactors for the velocity operators will contributes to α^2 , while the matrix element $\langle M'|T_0^{ij}(q)|M\rangle$ as shown above will contributes to $\mathcal{O}(\alpha^2)$ at order $\mathcal{O}(q^0)$ and $\mathcal{O}(1)$ to $\mathcal{O}(q^2)$. Therefore, together with the overall e^2 , Fig. 6a will contributes at order $\mathcal{O}(\alpha^3)$ to the coefficients of q^2 , and to $\mathcal{O}(\alpha^5)$ for coefficients of q^0 , therefore not relevant for our calculation. Similar argument can be used to show that diagrams in Fig. 6b and Fig. 6c (T_{e1}^{ij}) will be irrelevant to NLO as well. The last diagram Fig. 6d,

- DR for bound states.
- 1. All quantities are in *D* dimensions, including NR wave functions.
- 2. However, the sum-rule $\sum_{M} \frac{2\vec{v}_{NM} \cdot \vec{v}_{MN}}{D(E_{M} E_{N})} = \frac{1}{m}$ will guarantee that the coefficients of the $\frac{1}{\epsilon}$ poles are *D*-independent constants.
- 3. Similar to the simplified calculation to the Lamb' shift.

Caswell/Lepage, Phys. Lett. B 167, 437. Labelle, Phys. Rev. D 58, 093013. Pineda and Soto, Nucl. Phys. B Proc. Suppl. 64,428

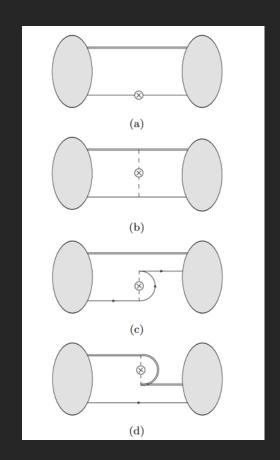
Outline

- Energy Momentum Tensor and mass distribution of boundstates.
- EMT form-factor for hydrogen-like atom: scale separation, IR sensitivity and NRQED.
- EMT form-factor in NRQED.
- Results and discussion.

The Leading order results

$$\begin{split} \frac{C_{\rm H}(q)}{m_e} &= \frac{1}{2m_e(\frac{q^2}{\alpha^2 m_e^2} + 4)} - \frac{\alpha}{4|q|} \left(\frac{\pi}{2} - \operatorname{Arctan} \frac{q}{2\alpha m_e} \right) \\ &+ \frac{\alpha\pi}{|q|} \frac{1}{(\frac{q^2}{\alpha^2 m_e^2} + 4)^2} + \frac{\alpha\pi}{|q|} \frac{1}{(\frac{q^2}{\alpha^2 M^2} + 4)^2}. \end{split}$$

•
$$\frac{C_H(0)}{m_e} = \frac{1}{4m_e}$$
 is positive.



The leading order diagrams.

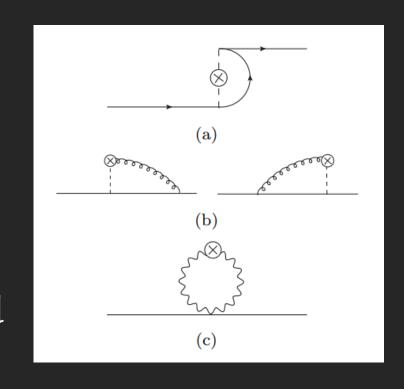
The matching coefficients d_0

$$T_{NRQED}^{ij} = T_{tree}^{ij} + d_0 (\partial^i \partial^j - \delta^{ij} \partial^2) \Psi^{\dagger} \Psi$$

The condition for matching

$$\left\langle \vec{Q} \left| T_{NRQED}^{ij} \right| - \vec{Q} \right\rangle = \left\langle \vec{Q} \left| T_{QED}^{ij} \right| - \vec{Q} \right\rangle$$

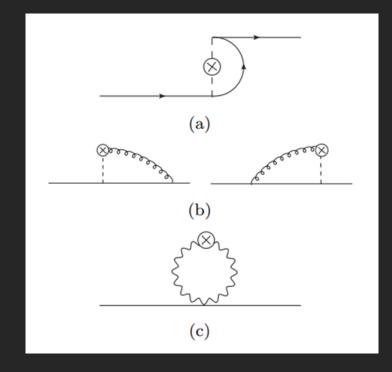
- Only photonic diagrams are relevant.
- Coulomb-self, mixed and tadpole diagram.
- Tadpole diagram originates from backward moving diagram in QED.



The relevant diagrams in free NRQED for T_{tree}^{ij} .

The matching coefficients d_0

- T^{ii} (trace) and $Q^iT^{ij}Q^j$ (longitudinal) calculated separately.
- 1. The Coulomb-self diagram is conserved separately.
- 2. Longitudinal parts cancel between the mixed and tadpole diagrams.
- 3. T^{ii} of the mixed diagram contains the logarithm.



The relevant diagrams in free NRQED.

The matching coefficients $d_{f 0}$

The total results reads

$$\langle T_{\text{tree}}^{ij}\rangle(2\vec{Q}) = (Q^iQ^j - \delta^{ij}Q^2)\tilde{C}(Q^2) , \qquad (97)$$

where

$$\tilde{C}(Q^2) = \frac{\alpha \pi}{8|Q|} + \frac{e^2}{6m_e \pi^2} \left(-\frac{1}{\epsilon} + \ln \frac{Q^2}{\mu^2} + \gamma_E - \ln \pi - \frac{7}{6} \right) . \tag{98}$$

Same in IR with QED, differs in UV

$$\tilde{C}_{\text{QED}}(Q^2) = \frac{\alpha \pi}{8|Q|} + \frac{e^2}{6m_e \pi^2} \ln \frac{4Q^2}{m_e^2} - \frac{11e^2}{72m_e \pi^2}$$
 (99)

The matching coefficients $d_{f 0}$

• As a result, one obtains the d_0

$$d_0 = -\frac{\alpha}{6\pi m_e} \left(\frac{1}{\epsilon} + \ln \frac{4\mu^2}{m_e^2} + \ln \pi - \gamma_E + \frac{1}{4} \right) . \quad (101)$$

• It contains UV logarithms $\ln \frac{\mu^2}{m_e^2}$, but no IR sensitivity.

- For the bound-state, the pure-radiative diagram is activated in the ultra-soft region.
- Dipoles expansion performed in ultrasoft region as usual.
- Tadpole diagram remains the same as Free-NRQED.
- Cancellation of longitudinal parts between (a), (c) and (d).

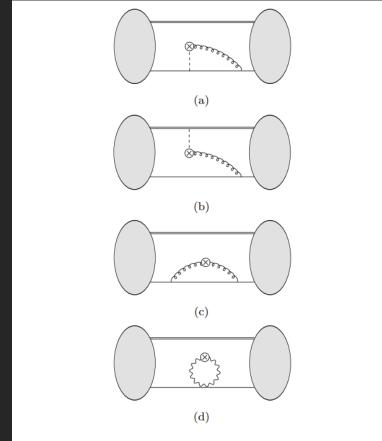


FIG. 7: The order- $\mathcal{O}(\alpha)$ contributions to $T_{\gamma}^{ij} + T_{\gamma p}^{ij}$ for a bound state. Dashed lines represent Coulomb photons and crossed circles denote the operator insertions.

The NLO contribution: checking conservation.

• For Figure (a)

$$Q^i \langle T_{\gamma \parallel \perp}^{ij} \rangle_{7\mathrm{a}} Q^j = \frac{Q^4 e^2}{\pi^2} \sum_M \frac{2 \vec{v}_{M0} \cdot \vec{v}_{0M}}{D(E_M - E_0)} \left(-\frac{1}{15\epsilon} + \frac{1}{15} \ln \frac{(E_M - E_0)^2}{\mu^2} + \frac{-15 \ln \pi + 15 \gamma_E - 1}{225} \right) \,.$$

For Figure (c)

$$Q^{i}\langle T_{\gamma\perp}^{ij}\rangle_{7c}Q^{j} = \frac{Q^{4}e^{2}}{\pi^{2}}\sum_{M}\frac{2\vec{v}_{0M}\cdot\vec{v}_{M0}}{D(E_{M}-E_{0})}\left(\frac{1}{15}\ln\frac{Q^{2}}{(E_{M}-E_{0})^{2}} + \frac{15\ln 4 - 46}{225}\right).$$

• For Figure (d)

$$Q^{i} \langle T_{\gamma \perp}^{ij} \rangle_{7d} Q^{j} = \frac{e^{2}}{15m_{e}\pi^{2}\epsilon} Q^{4} + \frac{e^{2}}{15m_{e}\pi^{2}} Q^{4} \left(-\ln \frac{Q^{2}}{\mu^{2}} + c_{2}' \right) ,$$

$$c_2' = \gamma_E - 3 + \ln 4 + \ln \pi + 2\psi\left(\frac{7}{2}\right) \equiv \frac{47}{15} - \gamma_E + \ln \pi - \ln 4$$
.

Cancellation works!

• As a result, from T^{ii} one has

$$\langle T_{\rm tree}^{ij} \rangle (2\vec{Q}) = (Q^i Q^j - \delta^{ij} Q^2) \tilde{C}_{\rm s}(Q^2) ,$$

$$\tilde{C}_{\rm s}(Q^2 = 0) = \frac{e^2}{6\pi^2} \sum_M \frac{2\vec{v}_{M0} \cdot \vec{v}_{0M}}{D(E_M - E_0)} \left(-\frac{1}{\epsilon} + \ln \frac{(E_M - E_0)^2}{\mu^2} + \gamma_E - \ln \pi - \frac{1}{2} \right) .$$

• To match to QED, simply adds $-4d_0$. This leads to our result.

Outline

- Energy Momentum Tensor and mass distribution of boundstates.
- EMT form-factor for hydrogen-like atom: scale separation, IR sensitivity and NRQED.
- EMT form-factor in NRQED.
- Results and discussion.

The D-term for hydrogen-atom

1.
$$\langle 0|T^{ij}(q)|0\rangle_{H} = (q^{i}q^{j} - \delta^{ij}q^{2})\frac{c_{H}(q)}{m_{e}}$$

2.
$$\frac{C_H(0)}{m_e} = \tau_H = \frac{1}{4m_e} + \frac{\alpha}{6\pi} \sum_{M \neq 0} \frac{2\vec{v}_{0M} \cdot \vec{v}_{M0}}{D(E_M - E_0)} \left(\ln \frac{4(E_M - E_0)^2}{m_e^2} - \frac{1}{4} \right)$$

- The logarithm couples the UV and IR. Similar to the Bethe logarithm.
- Both continuum and discrete spectrum contributes.

More explicitly, one has

$$\tau_H = \frac{1}{4m_e} + \frac{\alpha}{6\pi m_e} \left(\ln \alpha^2 + \frac{\tau_d}{4} + \frac{\tau_c}{4} - \frac{1}{4} \right)$$

1. The discrete spectrum part

$$\tau_d = \sum_{n=2}^{\infty} \frac{2^8 n^5}{3(n^2 - 1)^4} \left(1 - \frac{2}{n+1} \right)^{2n} \ln \left(1 - \frac{1}{n^2} \right)^2 = -0.264 \ .$$

2. The continuum spectrum part

$$\tau_{\rm c} = \frac{1}{3} \int_0^\infty dE \frac{2^8 \ln(2E+1)^2}{(2E+1)^4} \frac{e^{-\frac{4}{\sqrt{2E}} \operatorname{Arccot}(\frac{1}{\sqrt{2E}})}}{1 - e^{-\frac{2\pi}{\sqrt{2E}}}} = 0.458 \ .$$

Therefore, one has

$$\frac{\tau_H}{\tau_0} - 1 = \frac{4\alpha}{3\pi} (\ln \alpha - 0.028) = -1.54 \times 10^{-2}.$$

• The NLO contribution is small and negative.

Discussion and Summary

- The positivity of LO results is due to the long-range force in QED.
- Heuristically, one can guess it from result in free-QED

$$\tilde{C}_{\text{QED}}(Q^2) = \frac{\alpha \pi}{8|Q|} + \frac{e^2}{6m_e \pi^2} \ln \frac{4Q^2}{m_e^2} - \frac{11e^2}{72m_e \pi^2}$$
 (99)

- At small Q, the natural IR cutoff now is αm_e , therefore LO positive while NLO negative.
- Positivity holds for small photon mass.

Discussion and Summary

- To summarize, the EMT form factor in QFT are important quantities to understand the mass-structure of bound-states.
- We use the hydrogen-like atom in QED as a non-trivial example to show that the D-term is not necessarily negative.
- The example is multi-scale in nature and demonstrates the basic principles of EFT.

Ambiguity in T^{00} -based mass sum-rules

- Consider the O(N) non-linear sigma model in large N. One has
- 1. The classical energy: $H_c = \frac{1}{2} \int dx ((\partial_t \pi^a)^2 + (\partial_x \pi^a)^2)$.
- 2. The trace-anomaly: $H_a = \frac{\beta(g_0)}{2g_0} \int dx (\partial_\mu \pi^a)^2$.
- 3. The true $H = \int dx T^{00}(x)$ looks different across schemes.

The contribution of H_c , H_a in different UV regularization schemes.

scheme	H_c	$H_a \equiv H_S$	H
$k^2 \leq \Lambda_{ m UV}^2$	$\frac{m}{2}$	$\frac{m}{2}$	m
lattice	$\frac{m}{2}$	$\frac{m}{2}$	m
$ k_1 \leq \Lambda_{\mathrm{UV}}$	m	$\frac{m}{2}$	m
DR	m	$\frac{m}{2}$	m
$\frac{k_4^2}{\lambda^2} + k_1^2 \le \Lambda_{\text{UV}}^2$	$\frac{\lambda m}{1+\lambda}$	$\frac{m}{2}$	m

The NLO contribution for bound-state.

- We use the
- 1. Schwinger's α parameter for relativistic propagators
- 2. The λ parameter for NR propagators to disingularize all the Feynman integrals.
- Relations for Coulomb-gauge projections are used to simplify the integrand.
- Mellin transform trick is used to obtain the small q asymptotics.

The NLO contribution for bound-state.

Typical parameter-space representation looks like

$$F_1(q) = -\frac{D}{4}(\frac{D}{2} + 1)(1 - \frac{1}{D})\int_0^1 4x^2 \bar{x} dx \int_0^\infty d\lambda \int_0^1 dt_1 \int_0^1 dt_2 \int_0^\infty \rho^{-\frac{D}{2} + 1} d\rho e^{-\frac{\lambda^2}{4} - \lambda\sqrt{\rho x t_1} - 4\rho x(1 - x)t_2 q} , \qquad (E15)$$

$$F_2(q) = \frac{D}{2}(1 - \frac{1}{D}) \int_0^1 x(1 + 2x^2 - 2x) dx \int_0^\infty d\lambda \int_0^1 dt_1 \int_0^\infty \rho^{-\frac{D}{2} + 1} d\rho e^{-\frac{\lambda^2}{4} - \lambda\sqrt{\rho x t_1} - 4\rho x(1 - x)q} , \qquad (E16)$$

$$F_3(q) = -\frac{1}{D} \frac{D}{2} (1 - \epsilon) \int_0^1 4x (1 - x) dx \int_0^\infty d\lambda \int_0^1 dt_1 \int_0^\infty \rho^{-\frac{D}{2} + 1} d\rho e^{-\frac{\lambda^2}{4} - \lambda \sqrt{\rho} - 4\rho x (1 - x) t_1 q} , \qquad (E17)$$

$$F_4(q) = (1 - \epsilon) \int_0^1 (2x - 1)^2 dx \int_0^\infty d\lambda \int_0^\infty \rho^{-\frac{D}{2} + 1} d\rho e^{-\frac{\lambda^2}{4} - \lambda\sqrt{\rho} - 4\rho x(1 - x)q} , \qquad (E18)$$

$$F_5(q) = -\frac{D}{2}(1 - \frac{1}{D})\int_0^1 x(2x - 1)dx \int_0^\infty d\lambda \int_0^1 dt_1 \int_0^\infty \rho^{-\frac{D}{2} + 1} d\rho e^{-\frac{\lambda^2}{4} - \lambda\sqrt{\rho(xt_1 + 1 - x)} - 4\rho x(1 - x)q} . \tag{E19}$$

Clearly, all the integrals are absolutely convergent for D=3 and $q\neq 0$, thus one can set D=3 and use the Mellin transform technique as before to obtain the small-q asymptotics. Direct calculation leads to

$$\sum_{i=1}^{5} F_i(s) = -\frac{8}{15s^2} + \frac{8(15\ln(4) - 46)}{225s} + \mathcal{O}(1) , \qquad (E20)$$