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The talk is based on the recent work with Xiangdong-Ji:

Gravitational Tensor-Monopole Moment of Hydrogen Atom To Order O(a).
Arxiv: 2208.050209.



Outline

» EMT form-factor for hydrogen-like atom: scale separation,
IR sensitivity and NRQED.

= EMT form-factor in NRQED.

= Results and discussion.



Energy Momentum Tensor (EMT)

* Energy-momentum tenor (EMT) is not an unfamiliar object .

1. TH*Y(x) describes the distribution of mass and momentum flow in
many systems. Such as:

e Classical continuum matter. %/ called stress tensor. Often
decomposed further into pressure (trace) and (traceless).

* Classical electromagnetic dynamics. T is the famous
TY is the famous Maxwell stress tensor.
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EMT in QFT.
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» In QFT, T*Y(x) is more subtle. ‘

1. Formally as Noether’s currents of space-time translation
symmetry.

2. T%(x): the energy density. T%(x) the momentum density.
T (x): [9,TH = 0.

3. Ambiguity exists. Even for the “canonical” one, explicit
construction differs in regularization schemes. Meaning: DR vs
Lattice vs Pauli-Vilas, the same renormalized THV looks quite different
in terms of bare operators.



Canonical EMT in practical QFT

* The canonical EMT for gauge tl?e;)ry (QED or QCIS) in

1. TH = +
and parts are -~ RG invariant by themselves.
3. TH = +9Z ( ) decomposed into
4} 2€
and parts.
4 T =miy +( ).The

5. T%(x) : mass decomposition. Ambiguity & scheme & scale.

2105.03974. Ji&Liu,&Schafer



Hadronic EMT form factor.
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» The EMT form factor of spin/% particle (g = P' — P,P = P';P')
= (P'|THV|P) =
_ Pjgv)e
u(P’) y*“P") + B(q) oM 1o 0 (q* " - 9" q?) |u(P)
1. The Spin form factors. A(0) = B(0) = 1. Mass and spin sum-rule.
2. What about ? This is called the and remains unknown.

3. IsC(0) always ?



, hep-ph/960938L, Ji
Hadronic EMT form factor and GPDs hep-ph/9807358, Ji
hep-ph/0307382, Diehl
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« Where the EMT form factor can be probed ?

1. Twist-two parts. First moment of the Generalized parton
distributions (GPD). F(x,&,q) ~ H + E.

2 L, xHy(x,§,q) = (207,
f_ll xEg(x,$,q) = — (2§)? . And similar for quark.

3. Can be probed in DVCS, where § = — % is called the skewness.
4. Near threshold J /Y production: Clue to C(0)?

PhysRevD.103.096010, Guo, Ji, Liu
PhysRevD.106.086004,Mamo&Zahed



DVCS and vector meson production

(a) (b)

Figure 2. (a) Compton scattering; (b) leading Feynman diagrams for DVCS.

In the Bjorken limit, the DVCS amplitudes
factorizes into GPDs and Hard kernels.

FIG. 4: Examples of leading Feynman diagrams that
contribute to heavy vector meson photoproduction.

The vector meson production can also be used to
probe GPDs. Near threshold may probe £ ~ 1 region.



Experiment
performed in

Threshould J/¥ production and EMT form factor b

2207.05212
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J/W — 007 using M-Z approach
~—— J/W =007 using G-J-L approach
Lattice

05 1.0 15 2.0 25 30 35 40 45
k? (GeV?)

Extraction of the proton A form factor based Extraction of the proton D = 4C form factor.

on various approaches vs Lattice.
PhysRevD.103.096010, Guo, Ji, Liu

PhysRevD.106.086004,Mamo&Zahed



EMT form factor and Sign of C(0): clue from QED?

* Despite progress, uncertainly still large for C(0) and its PhYsic;r |
meaning. Is C(0) always

hep-ph/9902451, Polyakov&Weiss

» Insights from QED will be helpful.

» The C-form factor for single electron has been used as an example.
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Fig. 2. The total D-term of the electron as a function of 2.

Phys.Lett.B 820 (2021) 136501,
Metz&Pasquini&Rodini
Phys. Rev. D 15 (1977) 538, Milton,
The D-term of single
electron is for
small photon mass.
However,
Figure from

Metz&Pasquini&Rodini
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» Energy Momentum Tensor and mass distribution of bound-
states.

» EMT form-factor for hydrogen-like atom: scale separation,
IR sensitivity and NRQED.

= EMT form-factor in NRQED.

= Results and discussion.



Bound states in QED: the microscopic theory
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» The most famous bound state in QFT: the hydrogen atom.
» Field theoretical approach: heavy proton /

1. L =NiD°N + Lygp. Bethe-Salpeter approach.

2. L=—epy*PA, + Logp. A* =
field of the proton.

e
4|7

§H9: the static Coulomb

3. Can be shown to be equivalent.

FIG. 1: The Bethe-Salpeter equation for the wave function &
denoted by the oval blob. Double line re s propagator of
proton field and single li pre s th n

The dashed line represents the exchange of a Coulomb photon.

on propagator.




Bound states in QED: the microscopic theory
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4. Renormalized using the same Z; = Z, and Z3 as the free QED.

0L =(Z1 — V)Yr(iv -0 — m)Yr —e(Z1 — V)Ypry" (A r + AL)
Zs—1

LY T &
F}-g F,Lx.rx:ﬁf - 5

5. The free theory defined by the complete set of solutions of Dirac
equation in the background field.

6. Radiative correction added perturbatively in terms of standard Feynman
rules. Main difference: the

Weinberg, The Quantum theory of fields. Vol. 1

———— . — —



Bound states in QED: the microscopic theory

S =

4. Example: self-energy correction to bound-state.

Figure 4: The Feynman diagram for the one-loop electron self energy. The double lines
are dressed electron propagators and the crosses are counter terms. They contribute to
the energy shift dEy. Notice that the forth diagram corresponds to the counter term

Z-lp H F . that couples the background and radiative photon fields.

icult.

5. Ingeneral, analytic calculation is very di
Vacuum Polarization in a Strong Coulomb Field, Wichmann & Kroll. Phys.Rev.101,1956



Scale separation and NRQED

» However, when a@ « 1, simplification occurs due to the

of the bound states:
1. The ks ~ am,. The size of the NR wave function.
2. The k,s ~ a?m,.The binding energy/kinematic energy.

3. The UV scale m,. The electron mass.

2

* When expanded in the scale separations a::%e or amme, expression
e
simplifies a lot. in renormalizable theory.

= Similar in spirit to twist expansion/OPE in high-energy limit.



Caswell/Lepage, Phys. Lett. B 167, 437.
Labelle, Phys. Rev. D 58, 093013.

Scale SeP aration and NRQED 6P:}n:<2ig and Soto, Nucl. Phys. B Proc. Suppl.
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» The NRQED is the modern way to organize this expansion .
One needs

1. NRQED Lagrangian in terms of
_ D? cre , - | 1
L=YI\iD°+——--—6 B |¥Y-—-F?>+0(—
m

2m 2m 4
2. The cr and others matches the
. “Splitting of Logarithms”.

3. For individual operators, matching through local counter-
terms.



EMT for NRQED

= One can construct the “tree-level” EMT in NRQED:

T — T” +T” +T” +T”

tree

1. TV = - Lwtpipiy — L pipipty 4 1 (ply) pHy
i4m I4m 8m

2. T, is the standard photon EMT.

3. ;{, = §Y VV vV, — 0V, 8V, — 9/ 4 'V, is the interference

between the Coulomb flefds of electron and proton.
e

4. V?V, = e¥T¥ is the Coulomb field of the electron. V, = —.

41Tr

E— = = = — — _ _ R o .



EMT for NRQED

5. One can show that the above Ttirje o 18
using EOM.

6. However, to match to the TY in QED, local counter-terms are
required.

= In this work we calculate to order %. At this order, one needs
only one counter-term

ij e a
TxroED = Tiree T+ +0(=).

E— = = = — — _ _ R o .



The overall-strategy of the calculation.
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1. To obtain the matching coefficient dy. One calculates using
and match to QED.

Reason: Free NRQED and dressed NRQED shares the same UV.

2. Combine d with bound-state calculation to get full result.

3. DR with D = 3 — 2¢ is adopted consistently. Coulomb gauge
is chosen.

eliminates all the fermionic diagrams.



The overall-strategy of the calculation.

The leading order diagrams. The one-loop fermionic diagrams. The photonic diagrams.



The overall-strategy of the calculation.
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= An example of power-counting in «

—(M'|TZ (| M) |
(64)

including the
to see that for

ene denomina

for the photon contributes to (am.)™~ or (am
»d by the integration m

factors for the vel
while the matrix ele

Fig, (6a) in 2208.05029

at order

) for coeffici
vant for our calculation. Similar argument
to show that diagrams in Fig. 6b and Fig




The overall-strategy of the calculation.

S ———

* DR for bound states.

1. All quantities are in D dimensions, including NR wave
functions.
2UNM-UMN _

1.
2. However, the sum-rule ), s b will guarantee that
M—EN

3. Similar to the simplified calculation to the Lamb’ shift.

Caswell/Lepage, Phys. Lett. B 167, 437.
Labelle, Phys. Rev. D 58, 093013.

Pineda and Soto, Nucl. Phys. B Proc. Suppl.
64,428
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» Energy Momentum Tensor and mass distribution of bound-
states.

» EMT form-factor for hydrogen-like atom: scale separation,
IR sensitivity and NRQED.

= Results and discussion.



The Leading order results
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- s _ - - - s C (q)
* (0]TY(@)|0), = (¢'q’ —86Yg*) = -

a (=& g
— — Arctan d
4| q 2am,

an

2 Tl

The leading order diagrams.



4 o o TU - TU +
The matching coefficients d,, NRQED = cree

» The condition for matching

( 5 TI:.IJI.QQED ) < Q‘ (0)2), )

= Only photonic diagrams are relevant.

» Coulomb-self, mixed and tadpole diagram.

» Tadpole diagram originates from backward
moving diagram in QED.

The relevant diagrams in free NRQED
for Ttl,{e e



The matching coefficients d|

= T%(trace) and Q'TY Q) (longitudinal)
calculated separately.

1. The Coulomb-self diagram is conserved
separately.

3. T" of the mixed diagram contains the
logarithm.

The relevant diagrams in free NRQED.



The matching coefficients d|

» The total results reads

(TH.)(2Q) = (Q'Q7 —57Q)C(QY) . (97)

where

_ 2 2 ,

~ 5. QT e 1 Q) (

C(Q?) = — . | ——+In—5 4+ —Inm— =] .
(@7) 8|Q| T 6m 2 ( e T 112 TE | f:i)

(98)

= Same in IR with QED, differs in UV

2 'Vay 4 2
le'%iy e” 4~ 11e”

Cqep(Q?) = + 5 In—5 — (99)

2

81Q| ~ 6men® T m2  T2mew



The matching coefficients d|

= As aresult, one obtains the d,

1 42

¥

dog = — (— +In — +Inm—~vg + —) . (101)

6mm, \ € me 4

2
= It contains UV logarithms In %, but no IR sensitivity.
e



The NLO contribution for bound-state. Figure (b) vanishes.

S ——— — = = — ———— s - = ~—

= For the bound-state, the
in the ultra-soft
region.

» Dipoles expansion performed in ultra-
soft region as usual.

» Tadpole diagram remains the same as
Free-NRQED.

» Cancellation of longitudinal parts
between (a), (c) and (d).

FIG. 7: The order-(a) contributions to T.f.j + TI; for a bound
state. Dashed lines ulomb photons and crossed




The NLO contribution: checking conservation.

» For Figure (a)

—15In7 4+ 157 — 1°
225

- 200m - Unmo ( LT Q* 15In4 — 46 )

L S 02
QT )7.Q7 = == — N———— + ——
¢ \Dyl/Tc — D(Enm — Eo) \15 (Eax — Ep)? 225

» For Figure (d) O = et ().

15m.m%e 15m, ,Tz

47

15

_ (T
ch=7g —3+Ind+Inw+ 2 (2) = — —~vg+Inm—In4.



The NLO contribution: The total results

S — —

= Asaresult, from T* one has

(T )(2Q) = (Q'Q7 — 57 Q?)C4(Q?) ,

» Tomatch to QED, simply adds —4d,. This leads to our
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» Energy Momentum Tensor and mass distribution of bound-
states.

» EMT form-factor for hydrogen-like atom: scale separation,
IR sensitivity and NRQED.

= EMT form-factor in NRQED.



The NLO contribution: The total results
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» The D-term for hydrogen-atom
: . _ L i sij a2y CH@)
1. {0|T(@)|0), = (¢'q’ — 6Yq*) =

Cy(0) 1 a 2VoM YMo 1
2. = T = — In — =
me H ™ 4m, L LM#0 D(Ep—Ep) 4

= The logarithm couples the UV and ' . Similar to the Bethe
logarithm.

= Both continuum and discrete spectrum contributes.



The NLO contribution: The total results

S ——————

* More explicitly, one has

ty=——t+——(lna?+7,+7.—3)

IdMme 6TTM, 4

1. The part

- & . v ——2_ Arccot| —2—
e 2%In(2E 4+ 1) e VRES 2
T (2E + 1) 7




The NLO contribution: The total results

= Therefore, one has

H_1="(na—0.028) = —1.54 x 1072,

To 3T

e The NLO contribution is and



Discussion and Summary
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» The positivity of LO results is due to the long-range force in QED.

» Heuristically, one can guess it from result in free-QED

Y o2 4Q? 11e?
an AR S S

C W i 4+ - .
QED(Q ) 8|Q| 6771671-2 m% 72‘772'(.;7T2

= At small Q, the natural IR cutoff now is am,, therefore L.O
positive while NLO negative.

= Positivity holds for small photon mass.



Discussion and Summary
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» To summarize, the EMT form factor in QFT are important
quantities to understand the mass-structure of bound-states.

* We use the hydrogen-like atom in QED as a non-trivial example
to show that the D-term is not necessarily negative.

» The example is multi-scale in nature and demonstrates the basic
principles of EFT.



Ambiguity in T°°-based mass sum-rules 2105.03974.J

Liu, Schafer
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» Consider the O(N) non-linear sigma model in large N. One has
1. Theclassical energy : H, = % [ dx((8;7%)? + (0,7 ?)?).
2. The trace-anomaly: H, = % J dx( aun“)z :

0

3. Thetrue H = [ dx T (x) looks different across schemes.

The contribution of H,, H, in different UV
regularization schemes.




The NLO contribution for bound-state.
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* We use the
1. Schwinger’s @ parameter for relativistic propagators
2. The A parameter for NR propagators

to disingularize all the Feynman integrals.

= Relations for Coulomb-gauge projections are used to simplity the
integrand.

» Mellin transform trick is used to obtain the small g asymptotics.



The NLO contribution for bound-state.

» Typical parameter-space representation looks like

Fi(q) = _I["? +1)(1 - 5._} / dr°zdx / dX / dt, / dto / Tldpe™ A —\VpEE—4pz(1-2)tag \ (E15)
= <0 0

Fs5(q) = - 1= Ei / z(l 4+ 2z° — 2z)dx / dA n'f 1 / 2 r.lpf:. T Aesti—dpz(l-z)q (E16)
' 0 0

Jo
Fs(q) = _ﬁT (L —e€) / 4r(l — z)dx / dA / dt, / g+l(f;.‘n‘.'._T_"“"‘"*"_41'”"-1_!-":1“' : (E17)
2 0

r1 oo o .2 _ . .
Fi(q) = (1 —¢) / (2z — 1} *dux [ dA o £l -:.f;.n.. r—AVP—dpr(l-x)q . (E18)

e | sl o
o ) Az S ozt +1—1)—dpr(l—1) : \
Fs(q) = ——| 1 — —] / z(2z — 1)dz / dX / dty / ;‘J_ETJrldpﬂ_T_"‘\" plztitl-z)—dpz(l—z)q (E19)
0 0 0 Jo

Clearly, all the integrals are absolutely convergent for D = 3 and ¢ # 0, thus one can set D = 3 and use the Mellin
transform technique as before to obtain the small-¢ asymptotics. Direct calculation leads to

3 8(151n(4) — 46) _
Y‘ Fi(s) = 8(15In(4) — 46) +0(1) , (E20)
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