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The coalescence model

● A proton and a neutron form a 
deuteron if they are close in 
phase-space after the collision

Spherical approximation

[J.I. Kapusta, Phys.Rev.C 21 (1980)]
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The coalescence model

● A proton and a neutron form a 
deuteron if they are close in 
phase-space after the collision

● Simplest implementation:

Spherical approximation

● If relative momentum is less than 
some p0 the nucleons will coalesce

Spherical approximation
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The coalescence model

● A proton and a neutron form a 
deuteron if they are close in 
phase-space after the collision

● Simplest implementation:

Spherical approximation

● If relative momentum is less than 
some p0 the nucleons will coalesce

● Problem: spatial distances and QM 
Effects are not taken into account

● No Predictive power!!

Spherical approximation
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A step forward..
 The Wigner function formalism 
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The coalescence model

● In recent years an effort has been made to incorporate QM effects into 
coalescence

● Wigner function:

The Wigner function
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The Wigner function
The coalescence model

● In recent years an effort has been made to incorporate QM effects into 
coalescence

● Wigner function:

Wavefunction of the deuteron!

What is the wavefunction of the deuteron?
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The coalescence model

● There are multiple models for the 
deuteron wave function

● Simplistic:
Single Gaussian

● Experimental data (‘50s):

Two Gaussian
● From pion field theory (‘50s):

Hulthén
● From modern 𝜒EFT: 

Argonne 𝜈18 

The deuteron wavefunction
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The deuteron wavefunction
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✔

Wigner function never 
calculated

Wigner function never 
calculated

✔
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The coalescence model
The Wigner function formalism 

What do we need for coalescence?

p,n-pair     deuteron

Source 

10

(from: Kachelriess et al. Eur.Phys.J.A 56 (2020))
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What do we need for coalescence?

p,n-pair     deuteron

d3N/dP3 = Tr(ρdρNucl)

The coalescence model
The Wigner function formalism 

Quantum mechanics: 
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maximilian.horst@frm2.tum.de         Modelling the source for coalescence in small systems - excited QCD 2022

What do we need for coalescence?

p,n-pair     deuteron

d3N/dP3 = Tr(ρdρNucl)

d3N/dP3 = ∫d3q∫d3rp∫d3rn Deuteron Density  Nucleon Density

The coalescence model
The Wigner function formalism 

Quantum mechanics: 
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What do we need for coalescence?

p,n-pair     deuteron

d3N/dP3 = Tr(ρdρNucl)

d3N/dP3 = ∫d3q∫d3rp∫d3rn Deuteron Density  Nucleon Density

d3N/dP3 = S∫d3q∫d3rp∫d3rnW(q,r)  Wnp(pn,pp,rn,rp)/(2π)6

The coalescence model
The Wigner function formalism 

Quantum mechanics: 
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Spin-Isospin statistics factor 
(=⅜ for deuterons)

(from: Kachelriess et al. Eur.Phys.J.A 56 (2020))
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The coalescence model

d3N/dP3 = S∫d3q∫d3rp∫d3rnW(q,r)  Wnp(pn,pp,rn,rp)/(2π)6

● We can decompose Wnp = Gnp(pp,pn) Hnp(rn,rp)  = Gnp(pp,pn) h(rn) h(rp)

● If we assume a Gaussian source h(r) we can calculate a coalescence probability

   d3N/dP3 = S∫d3rp∫d3rnW(q,r)  h(rn)h(rp) = 3𝜁 exp(-q2d2)      𝜁=(d2/(d2+r2))3/2

depending on the rel. momentum q, the source size r and deuteron size d=3.2fm

The Wigner function formalism 
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(from: Kachelriess et al. Eur.Phys.J.A 56 (2020))

Assume no 
space-momentum 
correlations!

Assume uncorrelated 
emission of protons 
and neutrons!

Gaussian wave function!
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The coalescence afterburner in EPOS 3
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The coalescence afterburner

● Light nuclei are not produced in event generators
● Use p,n pairs produced in the generator and apply 

Wigner function formalism to predict deuteron yields

Important quantities for coalescence:

○ Charged-particle multiplicity
○ Spatial distribution
○ Momentum distribution

Deuteron data

All of these quantities were measured by ALICE for pp @ √s = 13 
TeV with high-multiplicity (HM) trigger including d and p spectra

ALICE Collab.: JHEP 01 (2022) 106
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The coalescence afterburner

● Massive differences when 
comparing to HM I (0-0.01%) 
multiplicity class

Multiplicity distribution
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The coalescence afterburner

● Massive differences when 
comparing to HM I (0-0.01%) 
multiplicity class

● After tuning the EPOS simulation we 
obtain the correct multiplicity 
distribution

● Tuning is done by triggering on 
forward and backward rapidity 
multiplicities

Multiplicity distribution

18



maximilian.horst@frm2.tum.de         Modelling the source for coalescence in small systems - excited QCD 2022

The coalescence afterburner

Correct momentum distribution

● Compare EPOS with
measured ALICE HM data

● HM trigger for EPOS included
● Use their ratio as a correction 

function on an event-by-event 
basis

● Region pT > 2 GeV not interesting 
for data comparison

Momentum distribution
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ALICE Collab.: JHEP 01 (2022) 106
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Deuteron spectra
Source model comparison

20

● For each p-n pair in each event 
simulated by EPOS we calculate 
the coalescence probability

● Reweight each nucleon according 
to pT

● Gaussian wave function
● Double Gaussian: Yields are 

Factor 5-10 too large (not shown)

ALICE Collab.: JHEP 01 (2022) 106
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Deuteron spectra
Source model comparison
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● Reject events using HM trigger
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Deuteron spectra
Source model comparison
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Modelling the source
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The emission source

● The source size is defined by the distance between particle pair
● We assume a gaussian source distribution:

Basics

2σ

Fit using:

24
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The emission source

1. Emissions source in pp HM was 
measured by ALICE Collab. using 
Femtoscopy techniques

2. EPOS fails to reproduce the 
mT-scaling of the source

25

Native EPOS results

ALICE Collab. Physics Letters B 811 (2020) 135849
(See Chiara Pinto’s talk 
from Monday for details)
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The emission source

1. Emissions source in pp HM was 
measured by ALICE Collab. using 
Femtoscopy techniques

2. EPOS fails to reproduce the 
mT-scaling of the source

3. Simple approach: sample distances 
from measurement according to the 
mT of the pair

4. Advanced approach: Scale the 
source and  propagate particles in 
EPOS to reproduce the measurement

Native EPOS results
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ALICE Collab. Physics Letters B 811 (2020) 135849
(See Chiara Pinto’s talk 
from Monday for details)
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The advanced source model in EPOS

Propagation scheme:

Scheme
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The advanced source model in EPOS

Propagation scheme:

● We obtain a scaling factor as a 
function of mT from the source size 
measurement

Scheme
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The advanced source model in EPOS

Propagation scheme:

● We obtain a scaling factor as a 
function of mT from the source size 
measurement

Scheme
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The advanced source model in EPOS

Propagation scheme:

● We obtain a scaling factor as a 
function of mT from the source size 
measurement

● We move the primordials out radially 
until we reach the scaled distance

● This distance ( x ) is the same for 
both primordials of the pair

Scheme

x x~ ~

30
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Deuteron spectra with different source models 
using the Wigner function formalism

31
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Deuteron spectra

● “Native”: unaltered EPOS source
● “Model”: Source model with 

propagation scheme
● “ALICE”: Source model sampling from 

the measurement
● Double Gaussian: Yields are Factor 

5-10 too large (not shown)

Source model comparison

32
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Improving the coalescence results
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The coalescence model

● There are multiple models for the 
deuteron wave function

● Simplistic:
Single Gaussian

● Experimental data (‘50s):

Two Gaussian
● From pion field theory (‘50s):

Hulthén
● From modern 𝜒EFT: 

Argonne 𝜈18 

The deuteron wavefunction
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✔

Too high yield 
(~factor 5-10)

Wigner function never 
calculated

Wigner function never 
calculated
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The coalescence model

● There are multiple models for the 
deuteron wave function

● Simplistic:
Single Gaussian

● Experimental data (‘50s):

Two Gaussian
● From pion field theory (‘50s):

Hulthén
● From modern 𝜒EFT: 

Argonne 𝜈18 

The deuteron wavefunction
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✔

Too high yield 
(~factor 5)

Wigner function never 
calculated

Wigner function never 
calculated

Until now..
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● Hulthén wave function comes from a 
Yukawa-like potential

● Wigner function has a (surprisingly) 
simple form

● Calculate probability (so far only 
numerical integration)

The Hulthén Wigner function
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Deuteron spectra with Hulthén wave function 
and 2 different source models
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Coalescence using Hulthén 
Deuteron Spectra
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Coalescence using Hulthén 

● “Model”: ~45% too high yield
● “ALICE”: ~25% too little yield
● Big difference when breaking 

correlations! (from sampling random 
distances)

Deuteron Spectra

Further study correlations!

40
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Correcting angular correlations
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Correlations comparison
Δη-Δ𝜑 Correlation function 

42

EPOS ALICE (Eur.Phys.J.C 77 (2017) 8, 569)
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Correlations comparison
Δη-Δ𝜑 Correlation function 

Region where coalescence happens!

43

EPOS ALICE (Eur.Phys.J.C 77 (2017) 8, 569)
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Angular correlations

● Comparison between 7TeV MB pp 
by ALICE and 13 TeV MB in EPOS

● No 13 TeV HM data published
● Big differences in the region of 

interest!

Δη-integrated Δ𝜑 Correlation function 

Coalescence mainly happens here!

ALICE Collab. (Eur.Phys.J.C 77 (2017) 8, 569)
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Deuteron spectra

● Improvement of the Hulthen + 
Model (45%->30%)

● In future improvement with 2D Δη-
Δ𝜑 correlation

Δ𝜑 Reweighting

45



maximilian.horst@frm2.tum.de         Modelling the source for coalescence in small systems - excited QCD 2022

Summary

● Event generators need to be tuned 
and improved a lot to get a realistic 
description

● Hulthén wave function working 
much better than Gaussian

● Two-particle correlations have a 
huge impact on coalescence 
predictions 
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Backup slides
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High multiplicity trigger in EPOS

● Approach: follow ALICE method closely

● Correlate charged particle multiplicities in 
V0M region with mid-rapidity

● Trigger for different V0M multiplicities and 
compare mid-rapidity to ALICE 
measurement

V0M: -3.7 < η < -1.7 and 2.8 < η < 5.1
mid-rapidity: -0.5 < η < 0.5
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Comparison with and without Δη-Δ𝜑 Correlation
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