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e The Phase diagram at large N,
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LARGE N, LIMIT RESULTS

Historically (G. 't Hooft 1974, Witten, ...), 1/N. could be an expansion parameter.

In the No — oo limit eg.:

Stable, noninteracting mesons and glue-balls (infinite number with fixed gn.)
in the hadronic phase with m oc NO masses.

. 1
Baryon masses diverges as mp o< N, .

Hadronic phase built from noninteracting mesons and glueballs,
energy density scales as o Ng.

Phase boundary to quark-gluon plasma at a temperature o IV, 2 .

Energy density of quark-gluon phase N, 3 = First or second order
phase transition is expected.

Quark loops are suppressed: the thermodynamics expected to become
similar to Yang-Mills.

Confined, quarkyonic phase may appears for large density
McLerran, Pisarski: Nucl. Phys. A 796, 83-100 (2007)
McLerran, Redlich, Sasaki: Nucl. Phys. A 824, 86-100 (2009)

In nature N¢ = 3 is realized, does it count as large or not?
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ELSM

Vector and axial vector meson Extended Polyakov Linear Sigma Model. (or PLeLSM)
Effective model to study the phase diagram of strongly interacting matter at finite 7" and p.
Phys. Rev. D 93, no. 11, 114014 (2016)

e Linear Sigma Model: "simple" quark-meson model, Ny =2+ 1

e Extended: Vector and Axial vector nonets (besides to Scalar and Pseudoscalar)
Isospin symmetric case: 16 mesonic degrees of freedom.

e Polyakov: Polyakov loop variables give 2 order parameters ®, ®.

e Starting from the Lagrangian Lysv = L + Ly

J A

Lagrangian with 4 nonets of meson fields Yukawa-type fermion-meson interaction
eg: PS—m, K, f(f’,f({{ for (pseudo)scalars



ELSM

e L., contains the dynamical, the symmetry breaking,
and the meson-meson interaction terms.

e U(1)4 anomaly and explicit breaking of the chiral symmetry.
o Each meson-meson terms up to 4th order that are allowed by the chiral symmetry.

e Constituent quarks (Ny =2+ 1) in Yukawa Lagrangian

Ly =9 (iv"0y — gr(S — iysP)) (1)

e SSB with nonzero vev. for scalar-isoscalar sector ¢n, ¢s.
9F

V2
e After U(1) 4 anomaly, ESB and SSB

gr . .
= My,q = 7¢N, ms = ¢s fermion masses in Ly .

SU(3)L X SU(S)R X U(l)v X U(l)A — SU(Z)] X U(l)V

e Mean field level effective potential — the meson masses and the thermodynamics
are calculated from this.



THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic fields.
¥ (i7" Oy — diag(mu, ma, ms)) ¥

Functional integration over the fermionic fields.
The momentum integrals are renormalized.

e Polyakov loop potential.

T, puq) = Ut + Q4q(T', piq) + Upol (T, p1q) (2)
Qy,=-2N. > / E¢(p),
dq
f=u,d,s 271-)3
QL (T, 1) = —2T 3 /( o[In (1 + LTe BB =10} £ 1n (14 Le—PEs @) +1a))]
f=u,d,s



THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic fields.
¥ (i7" Oy — diag(mu, ma, ms)) ¥

Functional integration over the fermionic fields.
The momentum integrals are renormalized.

e Polyakov loop potential.
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THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic fields.

Y (v 0y — diag(mu, ma, ms)) ¢
Functional integration over the fermionic fields.
The momentum integrals are renormalized.
e Polyakov loop potential.
T, l‘q) =Uci +Qqq (T, ﬂq) + Upol (7, .“q) (2)

Field equations (FE):
o o 0 90

o9~ 9% 0pn  Obs
Curvature meson masses:
2 _ 00
‘ 9%a0% | {;3=0



SCALING OF THE QUARK-MESON MODEL (7" = 0)

The scaling of the quark-meson model can be studied by rescaling the model parameters

Parameters (N, = 3) from Phys. Rev. D 105, no.10, 103014 (2022)
By theoretical considerations The vacuum meson masses scales as N, g
1 ‘ ‘ ‘
m, mi, 6s | NQ A S
K —— Ky —— 1
g1, 92, 9f 1/\/J1Vc 08t K 0 0
A2, ha, h3 N; .
A1, hi N2 S S ——
—3/2 S \ e
“ N Y
hnys Nec g7 [,r’ﬁ""""*ff—'—fk  ——
[ 1/ v Ne¢ 02 o S
The meson condensates (¢n, ¢g) 0 ‘ ‘ ‘ ‘
and all other quantities are 0 10 20 30 40 50
calculated via the FEs Ne



PoLyAkov POTENTIAL (7' > 0)

Two questions about the Polyakov-loop:
e Which Polyakov potential to use to have N. dependence?

e How to reduce the number of (N, — 1) d.o.f.



PoLyAkov POTENTIAL (7' > 0)

Two questions about the Polyakov-loop:
e Which Polyakov potential to use to have N. dependence?
e How to reduce the number of (N, — 1) d.o.f.

Usually used Potentials works for N, = 3.

Model proposed in Lo, Redlich, Sasaki: Phys. Rev. D 103, 074026 (2021)

Upol = Ucont + Uglue (5)

The terms favoring the confining and the deconfined minima, resp.

b
Ucont = —§Th’1 H, Uglue nglueT/ ( Trln 1A — Lpe™ BEA(p)) (6)



UNIFORM EIGENVALUE ANSATZ

There are too many parameters at large N¢
1
e Polyakov-loop operator: L € SU(N.), and parameters: &) = FTY(LI“)
c

e At N. = 2k(_+1) one has N. — 1 independent Polyakov-loop parameters
Dy, Pr, P, ., Pr1, (Pi) = N¢ + 1 Field equations



UNIFORM EIGENVALUE ANSATZ

There are too many parameters at large N¢
1
e Polyakov-loop operator: L € SU(N.), and parameters: &), = FT‘r(Lk)
c

e At N. = 2k(_+1) one has N. — 1 independent Polyakov-loop parameters
Dy, Pr, P, .., Pr—1, (Pi) = N¢ + 1 Field equations

Way to reduce the number of d.o.f.: Uniform eigenvalue ansatz

Im

T>0 = >0
General
A1 0
0 A2
L = —  Re
>‘Nc
Exact at N < 3 for g = 0. Dumitru, Guo, Hidaka: Phys. Rev. D 86, 105017 (2012)

Lo, Redlich, Sasaki: Phys. Rev. D 103, 074026 (2021)



UNIFORM EIGENVALUE ANSATZ

There are too many parameters at large N¢
1
e Polyakov-loop operator: L € SU(N.), and parameters: &), = FT‘r(Lk)
c

e At N. = 2k(_+1) one has N. — 1 independent Polyakov-loop parameters
Dy, Pr, P, .., Pr—1, (Pi) = N¢ + 1 Field equations

Way to reduce the number of d.o.f.: Uniform eigenvalue ansatz

Im

T>0 = >0
General
A1 0
0 A2
L= E— Re
>‘Nc
One can use v as the Only d.O.f. Dumitru, Guo, Hidaka: Phys. Rev. D 86, 105017 (2012)

Lo, Redlich, Sasaki: Phys. Rev. D 103, 074026 (2021)



RESULTS ON THE PHASE DIAGRAM

For T=0

e =0 = One can use only the quark-meson model.
e Only two FEs for the meson condensates ¢ and ¢g

e The first order transition along pg smoothed to crossover already at N. = 4

For T>0

e Need for the Polyakov-loop
e Three FEs for ¢, ¢s and 7 i.e. & when using UEA
e (Would be N¢ + 1 without the UEA)
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RESULTS ON THE PHASE DIAGRAM

For T=0

e ®=0 = One can use only the quark-meson model.
e Only two FEs for the meson condensates ¢ and ¢g

e The first order transition along pg smoothed to crossover already at Ne = 4

For T>0

e Need for the Polyakov-loop
e Three FEs for ¢, ¢s and v i.e. & when using UEA

e Thermal part of the fermion determinant and the Polyakov-loop Potential

b d3p _
Qlpg = —5T InH +ng1ueT/7(27r)3 Inga —27 / o) lngf + Ing; ]
f=u,d,s



RESULTS ON THE PHASE DIAGRAM

For T=0
QT =0,pq) = Uct + Qgq(T =0, nq)

o« N? j k x N}

For T>0

( InDet(U,) < N2 In Det(Ur) o N}
b
Qlpg = — TlngA + nglueT on )3 Inga —2T Z

f=u,d,s (

™

dp [lng}' + lng; ]



PHASE DIAGRAM AT N, =3
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PHASE DIAGRAM AT N, = 33
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PHASE DIAGRAM AT N, = 63

0.35

0.3

0.25

0.2

T[GeV]

0.15

0.1

0.05

Deconfined, chirally symmetric N.=63
—_— e g
\\
r  Confined, ' Confined, b
chirally broken \ chirally symmetric
1
L . |
1
'
L ' |
1
L 1
1
1
0 0.05 0.1 015 02 025 03 035 04

b [GeV]

A[GeV]

0.16
0.12
0.08
0.04

0.2
0 005 53 _ g [GeV]

015 o3
TiGeV] 0% 08 53



CROSSOVER LINE CLOSE TO THE CEP

The transition defined by the inflection point
e For first order it is well defined (at least it must be within the spinodals)

e For crossover it is not a perfect definition
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TRANSITION AT pg =0

Saturation of T,.(ug = 0, Ne — o0) (below) and pq,c(T = 0, No — 00)
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SCHEMATIC PICTURE FOR LARGE N,

Defining the pressure as

p(T, ru"I) = (Q(T7 :u'117¢N/S(T= MQ)VY(Tv /’LQ)) - Q(T7 Ha; ¢N/S(070)’Y(070)))

0.32 GeV

0.16 GeV

Scaling by dominant d.o.f.:

e mesons o< [V, E
e quarks o N}
e gluons xx N2
A confined, chir. restored

and p < N, 01 quarkyonic-like
phase appears



SUMMARY

e We investigated the Large N, limit of an extended Polyakov quark-meson model.

e The N. = 3 critical endpoint rapidly disappears, leaving a crossover
on the whole phase boundary.

e At N. =53 a new CEP appears along the temperature axis giving rise
to a first order line.

e The crossover of the chiral restoration and the deconfinement separates, leaving
a confined, but a chirally symmetric phase.

e For Large N, three phases can be separated:
e A confined and chirally broken phase, dominated by meson, therefore having p Ng
e A deconfined and chirally symmetric phase with p ch

e A confined but chirally restored, quarkonia-like phase with p oc NS

e Publication on the way, arXiv:2209.09568



THANK YOU!



BACKUP: PHASE DIAGRAM N, = 3 COMPARISON
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BACKUP: MASSES
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Backupr: UEA WITH GROUP ANGLES

N¢ — 1 group angles of the Cartan subgroup of SU(N.)
Ne—1
7= (g1, an) = D> ¥
j=1

Keeping only y1(=~v) #0

e® only for odd N,. For example, for N. = 6 and 7
L = diag (677;"/7 67i37/57 efm/s’ ew/57 ei37/57 ei'y) 7

L = diag (e—i'y’e—i2'y/376—i'y/3’60,ei'y/376i2'y/3’ e”) i



BACKUP: FERMION DETERMINANT

The thermal/matter part of the fermion determinant reads as

0)T d3p _
QO™ (T, 1g) = -2y / s (097 @)+ 1007 )]
where one can expand
g+ = Det, [1Nc + LTE*(E*IO/T] =1+ e*Nc(Ep*N)/T

+ N, [@e—(Ep_#)/T + cI)e—(Nc—l)(Ep—#)/T:I
1

+5 (N23? — NoBo) e 2(E-W/T
n % (N28? — Nody) e~ (Ne=2)(B=)/T

+ [terms with 3 to Nc-3 phases],

and g~ differs only in changing ® > ® and —p — +p.
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