Fate of the critical end point(s) in the large N_c limit

Győző Kovács PhD student Eötvös University Wigner RCP

EXCITED QCD 2022 2022. OCTOBER 25.

COLLABORATORS:
PÉTER KOVÁCS, WIGNER RCP
FRANCESCO GIACOSA, UJK KIELCE

OUTLINE

- \bullet Introduction: Large N_c limit
- Effective model at hand: ELSM
- $\bullet\,$ The Phase diagram at large N_c
- Summary

-

Large N_c limit results

Historically (G. 't Hooft 1974, Witten, ...), $1/N_c$ could be an expansion parameter.

In the $N_c \to \infty$ limit eg.:

- Stable, noninteracting mesons and glue-balls (infinite number with fixed qn.) in the hadronic phase with $m \propto N_c^0$ masses.
- Baryon masses diverges as $m_B \propto N_c^1$.
- Hadronic phase built from noninteracting mesons and glueballs, energy density scales as $\propto N_c^0$.
- Phase boundary to quark-gluon plasma at a temperature $\propto N_c^0$.
- Energy density of quark-gluon phase N_c^2 . \Rightarrow First or second order phase transition is expected.
- Quark loops are suppressed: the thermodynamics expected to become similar to Yang-Mills.
- Confined, quarkyonic phase may appears for large density
 McLerran, Pisarski: Nucl. Phys. A 796, 83-100 (2007)
 McLerran, Redlich, Sasaki: Nucl. Phys. A 824, 86-100 (2009)

In nature $N_c = 3$ is realized, does it count as large or not?

Large N_c limit results

Historically (G. 't Hooft 1974, Witten, ...), $1/N_c$ could be an expansion parameter. In the $N_c \to \infty$ limit eg.:

• Confined, quarkyonic phase may appears for large density

McLerran, Pisarski: Nucl. Phys. A 796, 83-100 (2007)

McLerran, Redlich, Sasaki: Nucl. Phys. A 824, 86-100 (2009)

In nature $N_c = 3$ is realized, does it count as large or not?

ELSM

Vector and axial vector meson Extended Polyakov Linear Sigma Model. (or PLeLSM) Effective model to study the phase diagram of strongly interacting matter at finite T and μ .

Phys. Rev. D 93, no. 11, 114014 (2016)

- Linear Sigma Model: "simple" quark-meson model, $N_f = 2 + 1$
- Extended: Vector and Axial vector nonets (besides to Scalar and Pseudoscalar) Isospin symmetric case: 16 mesonic degrees of freedom.
- Polyakov: Polyakov loop variables give 2 order parameters Φ , $\bar{\Phi}$.
- Starting from the Lagrangian $\mathcal{L}_{\mathrm{LSM}} = \mathcal{L}_m + \mathcal{L}_Y$

Lagrangian with 4 nonets of meson fields eg: PS — π , K, f_0^L , f_0^H

Yukawa-type fermion-meson interaction for (pseudo)scalars

- \mathcal{L}_m contains the dynamical, the symmetry breaking, and the meson-meson interaction terms.
 - $U(1)_A$ anomaly and explicit breaking of the chiral symmetry.
 - Each meson-meson terms up to 4th order that are allowed by the chiral symmetry.
- Constituent quarks $(N_f = 2 + 1)$ in Yukawa Lagrangian

$$\mathcal{L}_Y = \bar{\psi} \left(i \gamma^\mu \partial_\mu - g_F (S - i \gamma_5 P) \right) \psi \tag{1}$$

- SSB with nonzero vev. for scalar-isoscalar sector ϕ_N , ϕ_S . $\Rightarrow m_{u,d} = \frac{g_F}{2}\phi_N$, $m_s = \frac{g_F}{\sqrt{2}}\phi_S$ fermion masses in \mathcal{L}_Y .
- After $U(1)_A$ anomaly, ESB and SSB

$$SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A \rightarrow SU(2)_I \times U(1)_V$$

 Mean field level effective potential → the meson masses and the thermodynamics are calculated from this.

THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:

- Classical potential.
- Fermionic one-loop correction with vanishing fluctuating mesonic fields.

$$\bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \operatorname{diag}(m_u, m_d, m_s) \right) \psi$$

Functional integration over the fermionic fields. The momentum integrals are renormalized.

• Polyakov loop potential.

$$\Omega(T, \mu_q) = U_{Cl} + \Omega_{\bar{q}q}(T, \mu_q) + U_{Pol}(T, \mu_q)$$
(2)

$$\Omega_{\bar{q}q}^{V} = -2N_c \sum_{f=u,d,s} \int \frac{d^3p}{(2\pi)^3} E_f(p),$$

$$\Omega_{\bar{q}q}^{\rm T}(T,\mu_q) = -2T \sum_{f=u,d,s} \int \frac{d^3p}{(2\pi)^3} {\rm Tr}_c \left[\ln \left(1 + L^{\dagger} e^{-\beta (E_f(p) - \mu_q)} \right) + \ln \left(1 + L e^{-\beta (E_f(p) + \mu_q)} \right) \right]$$

THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:

- Classical potential.
- Fermionic one-loop correction with vanishing fluctuating mesonic fields.

$$\bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \operatorname{diag}(m_u, m_d, m_s) \right) \psi$$

Functional integration over the fermionic fields. The momentum integrals are renormalized.

• Polyakov loop potential.

$$\Omega(T, \mu_q) = U_{Cl} + \Omega_{\bar{q}q}(T, \mu_q) + U_{Pol}(T, \mu_q)$$
(2)

$$\Omega_{\bar{q}q}^{v} = -2N_{c} \sum_{f=u,d,s} \int \frac{d^{3}p}{(2\pi)^{3}} E_{f}(p),$$

$$\Omega_{\bar{q}q}^{T}(T,\mu_{q}) = -2T \sum_{f=u,d,s} \int \frac{d^{3}p}{(2\pi)^{3}} \left[\ln g_{f}^{+}(p) + \ln g_{f}^{-}(p) \right]$$

. .

THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:

- Classical potential.
- Fermionic one-loop correction with vanishing fluctuating mesonic fields.

$$\bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \operatorname{diag}(m_u, m_d, m_s) \right) \psi$$

Functional integration over the fermionic fields. The momentum integrals are renormalized.

• Polyakov loop potential.

$$\Omega(T, \mu_q) = U_{Cl} + \Omega_{\bar{q}q}(T, \mu_q) + U_{Pol}(T, \mu_q)$$
(2)

Field equations (FE):

$$\frac{\partial \Omega}{\partial \bar{\Phi}} = \frac{\partial \Omega}{\partial \Phi} = \frac{\partial \Omega}{\partial \phi_N} = \frac{\partial \Omega}{\partial \phi_S} = 0 \tag{3}$$

Curvature meson masses:

$$M_{ab}^2 = \left. \frac{\partial^2 \Omega}{\partial \varphi_a \partial \varphi_b} \right|_{\{\varphi_i\} = 0} \tag{4}$$

Scaling of the quark-meson model (T=0)

The scaling of the quark-meson model can be studied by rescaling the model parameters Parameters ($N_c = 3$) from Phys. Rev. D 105, no.10, 103014 (2022)

By theoretical considerations

$$m_0^2, \ m_1^2, \ \delta_S \ g_1, \ g_2, \ g_f \ \lambda_2, \ h_2, \ h_3 \ \lambda_1, \ h_1 \ c_1 \ h_{N/S} \ g_F \ 1/\sqrt{N_c}$$

The meson condensates (ϕ_N, ϕ_S) and all other quantities are calculated via the FEs

The vacuum meson masses scales as N_c^0

$\overline{\text{Polyakov Potential}} (T > 0)$

Two questions about the Polyakov-loop:

- Which Polyakov potential to use to have N_c dependence?
- How to reduce the number of $(N_c 1)$ d.o.f.

-7

Polyakov Potential (T>0)

Two questions about the Polyakov-loop:

- Which Polyakov potential to use to have N_c dependence?
- How to reduce the number of $(N_c 1)$ d.o.f.

Usually used Potentials works for $N_c = 3$.

Model proposed in Lo, Redlich, Sasaki: Phys. Rev. D 103, 074026 (2021)

$$U_{\rm Pol} = U_{\rm conf} + U_{\rm glue} \tag{5}$$

The terms favoring the confining and the deconfined minima, resp.

$$U_{\text{conf}} = -\frac{b}{2}T\ln H, \qquad U_{\text{glue}} = n_{\text{glue}}T \int \frac{d^3p}{(2\pi)^3} \text{Tr} \ln \left(\mathbb{1}_A - L_A e^{-\beta E_A(p)}\right)$$
(6)

Uniform eigenvalue ansatz

There are too many parameters at large N_c

- Polyakov-loop operator: $L \in SU(N_c)$, and parameters: $\Phi_k = \frac{1}{N_c} \text{Tr}(L^k)$
- At $N_c = 2k(+1)$ one has $N_c 1$ independent Polyakov-loop parameters $\Phi_1, \dots, \Phi_k, \bar{\Phi}_1, \dots, \bar{\Phi}_{k-1}, (\bar{\Phi}_k) \Rightarrow \mathbf{N_c} + \mathbf{1}$ Field equations

Uniform eigenvalue ansatz

There are too many parameters at large N_c

- Polyakov-loop operator: $L \in SU(N_c)$, and parameters: $\Phi_k = \frac{1}{N_c} \text{Tr}(L^k)$
- At $N_c=2k(+1)$ one has N_c-1 independent Polyakov-loop parameters $\Phi_1,\ldots,\Phi_k,\bar{\Phi}_1,\ldots,\bar{\Phi}_{k-1},(\bar{\Phi}_k)$ \Rightarrow $\mathbf{N_c}+\mathbf{1}$ Field equations

Way to reduce the number of d.o.f.: Uniform eigenvalue ansatz

$$L = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \\ & & \ddots \\ & & \lambda_{N_c} \end{pmatrix}$$

Exact at $N_c \leq 3$ for $\mu_q = 0$.

Dumitru, Guo, Hidaka: Phys. Rev. D 86, 105017 (2012)
 Lo, Redlich, Sasaki: Phys. Rev. D 103, 074026 (2021)

Uniform eigenvalue ansatz

There are too many parameters at large N_c

- Polyakov-loop operator: $L \in SU(N_c)$, and parameters: $\Phi_k = \frac{1}{N_c} \text{Tr}(L^k)$
- At $N_c=2k(+1)$ one has N_c-1 independent Polyakov-loop parameters $\Phi_1,\ldots,\Phi_k,\bar{\Phi}_1,\ldots,\bar{\Phi}_{k-1},(\bar{\Phi}_k)$ \Rightarrow $\mathbf{N_c}+\mathbf{1}$ Field equations

Way to reduce the number of d.o.f.: Uniform eigenvalue ansatz

$$L = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \\ & & \ddots \\ & & \lambda_{N_C} \end{pmatrix}$$

One can use γ as the only d.o.f.

Dumitru, Guo, Hidaka: Phys. Rev. D 86, 105017 (2012)
 Lo, Redlich, Sasaki: Phys. Rev. D 103, 074026 (2021)

For T=0

- $\Phi \equiv 0$ \Rightarrow One can use only the quark-meson model.
- \bullet Only two FEs for the meson condensates ϕ_N and ϕ_S
- The first order transition along μ_q smoothed to crossover already at $N_c=4$

For T>0

- Need for the Polyakov-loop
- Three FEs for ϕ_N , ϕ_S and γ i.e. Φ when using UEA
- (Would be $N_c + 1$ without the UEA)

For T=0

- $\Phi \equiv 0$ \Rightarrow One can use only the quark-meson model.
- \bullet Only two FEs for the meson condensates ϕ_N and ϕ_S
- The first order transition along μ_q smoothed to crossover already at $N_c=4$

For T>0

- Need for the Polyakov-loop
- Three FEs for ϕ_N , ϕ_S and γ i.e. Φ when using UEA
- Thermal part of the fermion determinant and the Polyakov-loop Potential

$$\Omega|_{\text{Pol}} = U_{\text{Pol}} + \Omega_{\bar{q}q}^{\text{T}}.$$

For T=0

- $\Phi \equiv 0 \implies$ One can use only the quark-meson model.
- Only two FEs for the meson condensates ϕ_N and ϕ_S
- The first order transition along μ_q smoothed to crossover already at $N_c = 4$

For T>0

- Need for the Polyakov-loop
- Three FEs for ϕ_N , ϕ_S and γ i.e. Φ when using UEA
- Thermal part of the fermion determinant and the Polyakov-loop Potential

$$\Omega|_{\rm Pol} = -\frac{b}{2}T \ln H + n_{\rm glue}T \int \frac{d^3p}{(2\pi)^3} \ln g_A - 2T \sum_{f=u,d,s} \int \frac{d^3p}{(2\pi)^3} \left[\ln g_f^+ + \ln g_f^- \right].$$

For T=0

$$\Omega(T=0,\mu_q) = \ U_{Cl} \ + \ \Omega_{\bar{q}q}(T=0,\mu_q)$$

$$\propto N_c^0 \qquad \qquad \propto N_c^1$$

For T>0

$$\ln \text{Det}(U_A) \propto N_c^2 \qquad \ln \text{Det}(U_F) \propto N_c^1$$

$$\Omega|_{\text{Pol}} = -\frac{b}{2} T \ln g_A' + n_{\text{glue}} T \int \frac{d^3p}{(2\pi)^3} \ln g_A - 2T \sum_{f=u,d,s} \int \frac{d^3p}{(2\pi)^3} \left[\ln g_f^+ + \ln g_f^- \right].$$

Phase diagram at $N_c=3$

Phase diagram at $N_c=33$

Phase diagram at $N_c=63$

Crossover line close to the CEP

The transition defined by the inflection point

- For first order it is well defined (at least it must be within the spinodals)
- For crossover it is not a perfect definition

Transition at $\mu_q = 0$

Saturation of $T_c(\mu_q = 0, N_c \to \infty)$ (below) and $\mu_{q,c}(T = 0, N_c \to \infty)$

1.

Schematic picture for large N_c

Defining the pressure as

$$p(T, \mu_q) = -\left(\Omega(T, \mu_q, \phi_{N/S}(T, \mu_q), \gamma(T, \mu_q)) - \Omega(T, \mu_q, \phi_{N/S}(0, 0)\gamma(0, 0))\right)$$

Scaling by dominant d.o.f.:

- mesons $\propto N_c^0$
- quarks $\propto N_c^1$
- gluons $\propto N_c^2$

A confined, chir. restored and $p \propto N_c^1$ quarkyonic-like phase appears

Summary

- \bullet We investigated the Large N_c limit of an extended Polyakov quark-meson model.
- The N_c = 3 critical endpoint rapidly disappears, leaving a crossover on the whole phase boundary.
- At N_c = 53 a new CEP appears along the temperature axis giving rise to a first order line.
- The crossover of the chiral restoration and the deconfinement separates, leaving a confined, but a chirally symmetric phase.
- For Large N_c three phases can be separated:
 - A confined and chirally broken phase, dominated by meson, therefore having $p \propto N_c^0$
 - A deconfined and chirally symmetric phase with $p \propto N_c^2$
 - A confined but chirally restored, quarkonia-like phase with $p \propto N_c^0$
- Publication on the way, arXiv:2209.09568

Backup: Phase Diagram $N_c = 3$ comparison

BACKUP: UEA WITH GROUP ANGLES

 $N_c - 1$ group angles of the Cartan subgroup of $SU(N_c)$

$$\vec{q} \equiv (q_1, \dots, q_{N_c}) = \sum_{j=1}^{N_c - 1} \gamma_j \vec{v}_j ,$$

Keeping only $\gamma_1 (\equiv \gamma) \neq 0$

$$L = \operatorname{diag}\left(e^{-i\gamma}, e^{-i\left(1 - \frac{2}{N_c - 1}\right)\gamma}, e^{-i\left(1 - 2\frac{2}{N_c - 1}\right)\gamma}, \dots, (e^0), \dots, e^{i\left(1 - 2\frac{2}{N_c - 1}\right)\gamma}, e^{i\left(1 - \frac{2}{N_c - 1}\right)\gamma}, e^{i\gamma}\right),$$

 e^0 only for odd N_c . For example, for $N_c=6$ and 7

$$\begin{split} L &= \operatorname{diag}\left(e^{-i\gamma}, e^{-i3\gamma/5}, e^{-i\gamma/5}, e^{i\gamma/5}, e^{i3\gamma/5}, e^{i\gamma}\right), \\ L &= \operatorname{diag}\left(e^{-i\gamma}, e^{-i2\gamma/3}, e^{-i\gamma/3}, e^{0}, e^{i\gamma/3}, e^{i2\gamma/3}, e^{i\gamma}\right), \end{split}$$

BACKUP: FERMION DETERMINANT

The thermal/matter part of the fermion determinant reads as

$$\Omega_{\bar{q}q}^{(0)T}(T,\mu_q) = -2T \sum_f \int \frac{d^3p}{(2\pi)^3} \left[\ln g_f^+(p) + \ln g_f^-(p) \right]$$

where one can expand

$$\begin{split} g^+ &= \mathrm{Det}_c \left[\mathbf{1}_{N_c} + L^\dagger e^{-(E-\mu)/T} \right] = & 1 + e^{-N_c (E_p - \mu)/T} \\ &\quad + N_c \left[\bar{\Phi} e^{-(E_p - \mu)/T} + \Phi e^{-(N_c - 1)(E_p - \mu)/T} \right] \\ &\quad + \frac{1}{2} \left(N_c^2 \bar{\Phi}^2 - N_c \bar{\Phi}_2 \right) e^{-2(E-\mu)/T} \\ &\quad + \frac{1}{2} \left(N_c^2 \Phi^2 - N_c \Phi_2 \right) e^{-(N_c - 2)(E-\mu)/T} \\ &\quad + [\mathrm{terms\ with\ 3\ to\ Nc-3\ phases}], \end{split}$$

and g^- differs only in changing $\bar{\Phi} \leftrightarrow \Phi$ and $-\mu \to +\mu$.