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OUTLINE

Introduction: Large N. limit

e Effective model at hand: ELSM

The Phase diagram at large N,

e Summary



LARGE N, LIMIT RESULTS

Historically (G. 't Hooft 1974, Witten, ...), 1/N. could be an expansion
parameter when N, is large. (Hope to having only planar diagrams.)

In the N. — oo limit eg.:

e Stable, noninteracting mesons and glue-balls (infinite number with
fixed qn.) in the hadronic phase with m o N masses.

e Baryon masses diverges as mp Ncl‘

e Hadronic phase built from noninteracting mesons and glueballs,
energy density scales as o Ng

e Phase boundary to quark-gluon plasma at a temperature o NN, g

e Energy density of quark-gluon phase N, 3
= First or second order phase transition expected.

e Quark loops are suppressed: the thermodynamics expected
to became similar to Yang-Mills.
e Confined, quarkyonic phase may appears for large density
McLerran, Pisarski: Nucl. Phys. A 796, 83-100 (2007)

McLerran, Redlich, Sasaki: Nucl. Phys. A 824, 86-100 (2009)

In nature N = 3 is realized, does it count as large or not?
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McLerran, Pisarski: Nucl. Phys. A 796, 83-100 (2007)
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In nature N¢ = 3 is realized, does it count as large or not?



ELSM

Vector and axial vector meson Extended Polyakov Linear Sigma Model.
Effective model to study the phase diagram of strongly interacting
matter at finite 7" and p.

Phys. Rev. D 93, no. 11, 114014 (2016)

e Linear Sigma Model: "simple" quark-meson model, Ny =2+ 1

e Extended: Vector and Axial vector nonets
(besides to Scalar and Pseudoscalar)
Isospin symmetric case: 16 mesonic degrees of freedom.

e Polyakov: Polyakov loop variables give 2 order parameters ®, ®.

e Starting from the Lagrangian Lysv = L + Ly

Lagrangian with four /\/

Yukawa-type fermion-meson
nonets of meson fields interaction for (pseudo)scalars
eg: PS —m, K, f§, fg



ELSM

e L,, contains the dynamical, the symmetry breaking,
and the meson-meson interaction terms.

e U(1)a anomaly and explicit breaking of the chiral symmetry.

e Each meson-meson terms upto 4th order that are allowed by the
chiral symmetry.

o Constituent quarks (Ny =2+ 1) in Yukawa Lagrangian

Ly = (iv"0p — gr(S — iy P)) ¢ 1)

e SSB with nonzero vev. for scalar-isoscalar sector ¢, ¢g.

= My ,q = 97F¢N, ms = g—F¢S fermion masses in Ly .

V2
e After U(1) 4 anomaly, ESB and SSB
SU(3)L X SU(3)R X U(l)v X U(l)A — SU(?)[ X U(l)v

e Mean field level effective potential — the meson masses and the
thermodynamics are calculated from this.



THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic
fields. ~
P (iv* 0y — diag(mu, ma, ms)) P

Functional integration over the fermionic fields.
The momentum integrals are renormalized.

e Polyakov loop potential.

T, pq) = Uct + Qaq(T', iq) + Upol(T), piq) (2)
QF, = —2N.
f=u,d,s
Qqu(Ta fq) = —2T Z / (2n [In(1+Lfe” e )ﬂtq))
f=u,d,s

+In (]_ + Le*/B(Ef(P)“qu))}



THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic
fields. ~
P (iv* 0y — diag(mu, mq, ms)) P
Functional integration over the fermionic fields.
The momentum integrals are renormalized.

e Polyakov loop potential.
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THE GRAND POTENTIAL

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic
fields.

1/} (7:'7”8/1« - diag(mU7 mq, ms)) 1/"

Functional integration over the fermionic fields.
The momentum integrals are renormalized.

e Polyakov loop potential.
UT, pq) = Uct + Qqq(T', 1q) + Upai (T, iq) (2

Field equations (FE):

o0 _on_ oo _ e o
0d ~ 9d  dpn  Opg
Curvature meson masses:

2b _ 92Q

‘ 90a0¢y | 14;)=0



SCALING OF THE QUARK-MESON MODEL (7" = 0)

The scaling of the quark-meson model can be studied by rescaling the
model parameters. Parameters (N, = 3) from
Phys. Rev. D 105, no.10, 103014 (2022)

By theoretical considerations
The vacuum meson masses oc N9

mg, m%’ ds Ng 1
g1, 92, 95 | 1/V/Ne R
)\27 h27 h3 Nc_l 0.8 n 0 0
A1, b1 N2 5 06t T -
Z3/2 g
c1 N g <~ ]
s NGA R e
o 1/v/Ne e ]

The meson condensates (¢n, ¢g) i 10 20 30 40
and other thermodyn. quantities Ne
are calculated via the FEs

50



PoLyAkov POTENTIAL (7' > 0)

Two questions about the Polyakov-loop:
e Which Polyakov potential to use to have N. dependence?

e How to reduce the number of (N, — 1) d.o.f.



PoLyAkov POTENTIAL (7' > 0)

Two questions about the Polyakov-loop:
e Which Polyakov potential to use to have N. dependence?
e How to reduce the number of (N, — 1) d.o.f.
Usually used Potentials works for N, = 3.
Model proposed in Lo, Redlich, Sasaki: Phys. Rev. D 103, 074026 (2021)
Upol = Ucont + Uglue (5)

The terms favoring the confining and the deconfined minima, resp.

b d3p _
Ucont = =5 T H,  Uge = nglueT/ Gy T (14— Lae™7Ea®)
(6)



UNIFORM EIGENVALUE ANSATZ

There are too many parameters at large N.
e Polyakov-loop operator: L € SU(N.), and parameters:
1
&), = —Tr(L")
N,
e At N¢ = 2k(+1) one has N¢ — 1 independent Polyakov-loop
parameters ®1,..., Pg, P1,...,Pr_1,(Px) = N¢ + 1 Field
equations



UNIFORM EIGENVALUE ANSATZ

There are too many parameters at large N.

e Polyakov-loop operator: L € SU(N.), and parameters:
b, = iTr(L’“)
N,
e At N. = 2k(+1) one has N, — 1 independent Polyakov-loop
parameters ®1,..., &, P1,...,Pp_1,(Px) = N¢ + 1 Field
equations

Way to reduce the number of d.o.f.: Uniform eigenvalue ansatz

Im Im
T>0 = @0
General

T>0 = ®>0
UEA

Exact at N. < 3 for pg = 0.

Dumitru, Guo, Hidaka: Phys. Rev. D 86, 105017 (2012)
Lo, Redlich, Sasaki: Phys. Rev. D 103, 074026 (2021)



UNIFORM EIGENVALUE ANSATZ

There are too many parameters at large N.

e Polyakov-loop operator: L € SU(N.), and parameters:
b, = iTr(L’“)
N,
e At N. = 2k(+1) one has N, — 1 independent Polyakov-loop
parameters ®1,..., &, P1,...,Pp_1,(Px) = N¢ + 1 Field
equations

Way to reduce the number of d.o.f.: Uniform eigenvalue ansatz

Im Im
T>0 = @0
General

T>0 = ®>0
UEA

One can use v as the only d.o.f.

Dumitru, Guo, Hidaka: Phys. Rev. D 86, 105017 (2012)
Lo, Redlich, Sasaki: Phys. Rev. D 103, 074026 (2021)



RESULTS ON THE PHASE DIAGRAM

For T=0

e =0 = One can use only the quark-meson model.
e Only two FEs for the meson condensates ¢ and ¢g

o The first order transition along g smoothed to crossover
already at N, =4
For T>0
e Need for the Polyakov-loop

e Three FEs for ¢, ¢s and v i.e. & when using UEA
e (Would be N¢ + 1 without the UEA)
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For T>0
e Need for the Polyakov-loop
e Three FEs for ¢, ¢s and v i.e. & when using UEA

e Thermal part of the fermion determinant
and the Polyakov-loop Potential

b —
Qlpo = —7T InH +ng1ueT/ lngA —oT Z / 2m)3 lng}' 4 lngf ]
f=u,d,s




RESULTS ON THE PHASE DIAGRAM

For T=0

T=0,uq) = Uct + Qqq(T =0, 1)

o« N? j k(le

InDet(Ua) o< N? In Det(Ur) oc N}

For T>0

b d3p d3p _
Qpo = _§T In g’y +"g1ueT/W Inga —2T Z / @) [lng;r + Ing; ]
=u,d,s



PHASE DIAGRAM FOR GROWING
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PHASE DIAGRAM FOR GROWING N,
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PHASE DIAGRAM FOR GROWING N,
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TRANSITION AT pg =0

Saturation of T,.(ug = 0, Ne — o0) (below) and pq,(T = 0, No — 00)
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SCHEMATIC PICTURE FOR LARGE Ne

Defining the pressure as

p(T, MCI) = (Q(T7 Ha; ¢N/S(T7 IU‘Q)v ’Y(T7 ,U/q)) - Q(Tv Haq, ¢N/S(07 O)W(Oa 0)))

0.32 GeV

0.16 GeV g

Scaling by dominant d.o.f.:

® mesons o< NS
e quarks o< NC1

e gluons ox N2

A confined, chir. restored
and p « N, cl quarkyonic-like
phase appears



SUMMARY

e We investigated the Large N, limit of an extended Polyakov
quark-meson model.

e The N. = 3 critical endpoint rapidly disappears, leaving a crossover
on the whole phase boundary.

e At N. =53 a new CEP appears along the temperature axis giving
rise
to a first order line.

e The crossover of the chiral restoration and the deconfinement

separates, leaving
a confined, but chirally symmetric phase.

e For Large N, three phases can be separated:

e A confined and chirally broken phase, dominated by meson,
. 0
therefore having p oc N,

e A deconfined and chirally symmetric phase with p oc Nf
e A confined but chirally restored, quarkonia-like phase with p Ng

e Publication on the way, arXiv:2209.09568



THANK YOU!



BACKUP: PHASE DIAGRAM N, = 3 COMPARISON
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BACKUP:
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Backupr: UEA WITH GROUP ANGLES

N — 1 group angles of the Cartan subgroup of SU(N.)

Ne—1
7= (q1,-an) = D ¥
=1

Keeping only y1(=~) #0

“ey

L = diag (67”, eii(liﬁ)w, eii(liQﬁ)w,.

i(1—2 2 i(1— 2+ i
@)ool lomia) o)
e only for odd N.. For example, for N, = 6 and 7
L = diag (e—m’e—i3w/5’e—m/5’em/57ei3w/57em> 7

L = diag (6717,67127/3,6717/3,60,617/376227/3,617) ,



BACKUP: FERMION DETERMINANT

The thermal/matter part of the fermion determinant reads as

3
Q)T (T, 1) = —2T; / (gﬂ])ggg [Ingf (p) + Ingj (p)]

where one can expand
g+ — Detc [lNc + LTe—(E_H)/T] =1+ 6_NC(E:D_:U)/T
+ N, [i)e*(Ep*N)/T + @e*(chl)(Ep*H)/T]
1 _ _
+5 (N28% — No®y) e 2(E-1/T
1
+ 3 (Nc2q)2 — N.®3) e~ (Ne—2)(E—p)/T
+ [terms with 3 to Nc-3 phases],

and g~ differs only in changing ® ++ ® and —pu — +p.



	Appendix

