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Emergence of hydrodynamics

* Hydrodynamics work amazingly well in describing the
evolution of matter produced in heavy ion collisions

* Fluid behavior requires (some degree of) local equilibration
How is this achieved? How does the system evolve from an
initial, non equilibrium, collection of partons, to the nearly
thermal state reached in the late stages of the collisions?



A very general problem tn Rinetic theory

Consider the (non-relativistic) Boltzmann equation
distribution function
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Introduce density, velocity field, and pressure
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When collisions dominate, the pressure becomes isotropic  Pij(F, 1) = 6;;P(F, 1)

and the Kinetic equation reduces to hydrodynamics
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Conservation laws for particle number and momentum



Longitudinal expa nwston hunders 'Lsotropizatiow

e The fast expansion of the matter along the
collision axis tends to drive the momentum

distribution to a very flat (oblate)

distribution

e Translates into the
existence of two
different pressures
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 Anisotropy (~ PL— Pr) relaxes slowly, like a ‘collective’

variable associated to a conservation law



Simple Rinetic equation
(Bjorken flow)

e 1+1 dimensional expansion, in relaxation time approximation
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expansion collisions

e Describes the transition from the collisionless regime (7 < 7r)

to the regime dominated by collisions, leading eventually to
hydrodynamics (7 > 7R)



Special, moments of the momentum distribution

(P®B, LLYan , 2017, 18, 19)
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L, = /p2P2n (cos8) f(p) Py(z) =1 Pyz)= %(3% ~1)
p (Legendre polynomial)

Why these moments ?

e There is too much information in the distribution function

e We want to focus on the angular degrees of freedom

The energy momentum tensor is described by first two moments
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We are looking for an effective theory for these two moments



coupled equations for the moments
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 The coefficients dy,b,,C,  are pure numbers (a0 =4/3 co=2/3)

e Interesting system of coupled linear equations

e Exact solution provides exact values for the energy density and
pressures, but does not allow the complete reconstruction of the

distribution function
e The competition between expansion and collisions is made obvious.
Note the absence of collisional damping for the energy density.

Effective theory obtained by 'eliminating’' moments L1



Two-moment truncation
(effective theory)
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e Contains second order viscous hydrodynamics a la Israel-Stewart

e Views hydrodynamics as a coupled mode problem

e Amenable to analytic solution, bringing insight into the notions of
attractors, general features of the gradient expansion, and its
resummations in terms of trans-series, etc. [not discussed here]

e Captures most important features of more sophisticated approaches,
and can be made quantitatively accurate with a simple renormalization
of a second order transport coefficient (al) [see later].



Collistonless regime

In the absence of collisions,

f(pr, p,7) = folpr, p.7/70)

All moments decay with the same power law at late time
gn(T) =70:InL,, gn(T — 00) = —1

Many moments are needed to accurately describe the late time distribution.

However a reasonably accurate description of the first two moments is obtained
from the truncation [can be improved - see later]
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NB: one mode is less damped and (trivially) plays the role of “attractor"



Free streaming fixed point

One can transform the coupled linear equations into a single non linear

differential equation for the quantity @ = iaai - (PL;PT = —c—lo(ao+go))
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e This fixed point structure is only moderately affected by higher moments

® This structure is approximately captured by Israel-Stewart hydrodynamics



Including collisions

Two-moment truncation
1
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Can be transformed into a non linear equation, similar to that
resulting form Israel-Stewart formulation of second order viscous
hydrodynamics and much studied in [Heller, Spalinski , 2015]
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T < TR one recovers the two free streaming fixed points

T > TR go tap = 0, 20 = —4/3 hydro fixed point



Attractor

Under the effect of collisions, the stable free streaming fixed point
evolves "slowly" into the hydrodynamic fixed point
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The "attractor” is the solution £0(7) that joins the (stable) free streaming
fixed point at early time to the hydrodynamic fixed point at late time.



The transition from free streaming to hydrodynamics

( Attractor solution )

Early and late times are controlled by the free streaming and the hydrodynamic
fixed points, respectively
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The transition region occurs when the collision rate is g i

comparable to the expansion rate (7 ~ 7r)



Renormalizing at cures unphysical features of two-moment truncation
(and other lsrael-Stewart calculations)
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conclustons

The solution of a simple kinetic equation for Bjorken flow was analysed in
terms of special moments of the distribution function.

The simplest two moment-truncation yields an 'effective’ theory that captures the
main qualitative features of the dynamics, in particular the transition from the

collisionless regime to hydrodynamics. It encompasses all versions of second order
(Israel-Stewart) hydrodynamics

The collisionless regime is characterized by two fixed points, one stable, the
other unstable. The effect of the collisions is to move “slowly"” the stable free
streaming fixed point into the (universal) hydrodynamic fixed point.



conclustons

The "attractor” emerges as the solution that joins the collisionless fixed point
at t=0 to the hydrodynamic fixed point at large time. The vicinities of the two

fixed points are easy to control (known ratios of moments in free streaming,
Navier-Stokes in hydrodynamics).

Hydrodynamic behavior emerges where it is supposed to do so, i.e. when the
collision rate is comparable to the expansion rate.

By 'improving' the transition region between the fixed points (i.e., adjusting the
free streaming fixed point), one does not 'improve' hydrodynamics!

The present analysis extends with ‘minor' modifications to the non-conformal case
(2208.02750)



