

JaeBeom Park (Korea University) - on behalf of CMS collaboration Excited QCD 2022 @ Sicily (Italy)

- Electroweak (EW) probes
- Flow/Correlations
- Jets
- Heavy Flavor (HF) & Quarkonia
- Ultraperipheral collisions (UPCs)

EW probes

- Flow/Correlations
- Jets
- HF & Quarkonia
- Ultraperipheral collisions (UPCs)

Initial state with Z bosons

[<u>PRL 127 (2021) 102002</u>]

- Deviation from flat centrality dependence
 : 2.2σ at 70–90%
- Qualitatively described by HG-PYTHIA
 - Initial geometry + event selection biases

Suggestion to replace Glauber model with
 # of Z boson counting

EW probes

- Flow/Correlations
- Jets
- HF & Quarkonia
- Ultraperipheral collisions (UPCs)

Multiparticle cumulants

• No sign change with large η gap : <u>Deviations from CGC predictions</u>

Charge balance function : $low-p_T$

[CMS-PAS-HIN-21-017]

Event 1

Balance function

 $B(\Delta\eta,\Delta\varphi) = \frac{1}{2}[C_2(+,-) + C_2(-,+) - C_2(+,+) - C_2(-,-)]$

- $|\Delta \phi|$, $|\Delta \eta|$ decrease for low-p_T - Delayed hadronization
 - Radial flow

Charge balance function : high-pt

[CMS-PAS-HIN-21-017]

Balance function

 $B(\Delta\eta,\Delta\varphi) = \frac{1}{2}[C_2(+,-) + C_2(-,+) - C_2(+,+) - C_2(-,-)]$

- $|\Delta \phi|$, $|\Delta \eta|$ decrease for low-p_T - Delayed hadronization

 - Radial flow
- Constant trend for high-p_T particles
 - produced from initial hard scattering & jet fragmentation
 - stronger correlation with charge partners compared to low-p_T

Charge balance function vs models

[CMS-PAS-HIN-21-017]

- Generators fail to reproduce results for $\mid\! \Delta\eta\!\mid$
- $|\Delta \phi|$ qualitatively described by AMPT inclusion of collective effects

KOREA

[CMS-PAS-HIN-21-011]

28 Oct 2022

Higher-order moments

- [CMS-PAS-HIN-21-011]
- Study for the origin of non-gaussian flow fluctuations
 - Skewness (γ_1^{exp}) : 3rd moment
 - Kurtosis (γ_2^{exp}) : 4th moment
 - Superskewness (γ_3^{exp}) : 5th moment
- Nonzero values for γ_1^{exp} , γ_2^{exp} , γ_3^{exp} in both standardized and cleaned (higher-order moments removed)
- Strong constraints to initial state geometry in hydrodynamical calculations

Femtoscopy of K^0_S and $\Lambda(\overline{\Lambda})$

• No evidence for bound H-dibaryon in PbPb with $\Lambda\Lambda \oplus \Lambda\overline{\Lambda}$ correlation

KOREA

E-by-E fluctuation via $D^{\circ} v_2{4}$

[<u>PRL 129 (2022) 022001</u>]

Probing event-by-event fluctuation

- $v_2{4}/v_2{2}$ as a discriminator of v_2 fluctuations
 - Similar trend as charged particles
 fluctuations mainly from initial geometry?
 - Deviation in most-central & most-peripheral
 : Hint of additional fluctuations from E-loss
- Better described by collisional E-loss mechanisms

KOREA

EW probes

Flow/Correlations

Jets

- HF & Quarkonia
- Ultraperipheral collisions (UPCs)

jet shape in Pop and pp (1)

[arXiv:2210.08547

28 Oct 2022

• Larger relative modification for b and inclusive jets at large Δr in central collisions

0

jet shape in Physe and pp (2)

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, PbPb 1.69 nb⁻¹, pp 27.4 pb⁻¹, anti- k_T jet (R = 0.4): $p_T^{\text{jet}} > 120 \text{ GeV}$, $\eta_{\text{iet}} I < 1.6$

• Larger relative modification for b and inclusive jets at large Δr in central collisions

• Depletion at small Δr : suggestion of dead-cone effect for b jets

[arXiv:2210.08547

pjet

jet shape in Physe and pp (3) KOREA UNIVERSITY

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, PbPb 1.69 nb⁻¹, pp 27.4 pb⁻¹, anti- k_T jet (R = 0.4): $p_T^{\text{jet}} > 120 \text{ GeV}$, $\eta_{\text{iet}} < 1.6$

Parton-Medium Interactions

Jet RAA of large area

[JHEP05(2021)284]

- Competing effects
 - Recovery of E-loss
 - Stronger suppression in wider cone

Jet RAA of large area (low-pt)

- Competing effects
 - Recovery of E-loss
 - Stronger suppression in wider cone

Caveat at lower-p_T @ LHC (ATLAS/ALICE)

 sensitive to detailed jet reconstruction
 algorithm?

- EW probes
- Flow/Correlations
- Jets
- HF & Quarkonia
- Ultraperipheral collisions (UPCs)

Open vs hidden charm in PbPb

- v2 maxima at mid-central collisions for D0 & J/ ψ —> hydrodynamical behavior
- D^o v₃ > J/ ψ v₃ : open charm less sensitive to initial geometry? N.B different p_T range

Charm v₃ in PbPb @ LHC

- Hint of larger v_3 for open charm than hidden charm mesons
- Not possible for a firm conclusion with current uncertainties..

Charm vs bottom in PbPb

- Prompt D⁰, J/ ψ v₂ > b -> D⁰, J/ ψ v₂ : different in-medium effects for charm and bottom
- Prompt D⁰ v₃ > b \rightarrow D⁰ v₃ $\langle \rightarrow \rangle$ Not seen with J/ ψ

: different b-quark medium effect transfer for open vs hidden charm? b/c of different p_T region?

KOREA

Charmonia in PbPb

[CMS-PAS-HIN-21-008]

• Hint of $v_2(\psi(2S)) > v_2(J/\psi)$: recombination? path-length E. loss? Jet-fragmentation?

Charmonia in PbPb

[CMS-PAS-HIN-21-008]

<u>[EPJC 78 (2018) 509]</u>

- Hint of $v_2(\psi(2S)) > v_2(J/\psi)$: recombination? path-length E. loss? Jet-fragmentation?
- Still larger suppression than J/ ψ at high-p_T : R_{AA}(J/ ψ) > R_{AA}(ψ (2S))

Bottomonia in PbPb

[CMS-PAS-HIN-21-007]

- Observation of Y(3S) in PbPb! (> 5σ)
- Clear quantification of Y(1,2,3S) sequential suppression $R_{AA}(Y(1S)) > R_{AA}(Y(2S)) > R_{AA}(Y(3S))$

Bottomonia in PbPb

[CMS-PAS-HIN-21-007]

- Observation of Y(3S) in PbPb! (> 5σ)
- Clear quantification of Y(1,2,3S) sequential suppression R_{AA}(Y(1S)) > R_{AA}(Y(2S)) > R_{AA}(Y(3S))
- Propose a new observable
 : Y(3S)/Y(2S) double ratio
- Strong constraints on models

Bottomonia in PbPb and pPb

CMS-PAS-HIN-21-007

- Clear quantification of Y(1,2,3S) sequential suppression $R_{AA}(Y(1S)) > R_{AA}(Y(2S)) > R_{AA}(Y(3S))$
- Sequential suppression also in pPb! •
- Cold or hot medium final state effect?

PLB 835 (2022) 137397

$Y(1S) v_2$ in pPb

- Smaller v₂ of Y(1S) in pPb than $J/\psi!$
- Deviation from LO CGC predictions
 - Caveat of LO only + large data unc.
- Small v_2 predicted by dissociation-only picture

$\mathsf{CMS}\;\mathsf{HF}\;\mathsf{v}_2\;\mathsf{Zoo}\;\colon\;\mathsf{PbPb}$

• Low-p_T : light > open charm > hidden charm > open beauty > hidden beauty

$\mathsf{CMS}\;\mathsf{HF}\;\mathsf{v}_2\;\mathsf{Zoo}\;\colon\;\mathsf{PbPb}$

- Low-p_T : light > open charm > hidden charm > open beauty > hidden beauty
- High-p_T : converge for all hadron species

CMS HF v2 Zoo : PbPb & pPb

- Hierarchy also in pPb! light > open charm ≈ hidden charm > open beauty ≥ hidden beauty
 - Note in pPb Prompt D⁰ $v_2 \approx J/\psi v_2$ different behavior than in PbPb

B_c mesons in PbPb

[<u>PRL 128 (2022) 252301</u>]

• Binding energy : J/ψ < B_c < Y(1S) \rightarrow novel probe for recombination?

B_c and B_s mesons in PbPb

- Binding energy : $J/\psi < B_c < Y(1S) \rightarrow$ novel probe for recombination?
- Low-p_T enhancement suggested by models for B_s : not confirmed with current precision
 → Future prospects for Run3+Run4 data analysis

- EW probes
- Flow/Correlations
- Jets
 - HF & Quarkonia
- Ultraperipheral collisions (UPCs)

$\gamma\gamma \rightarrow \tau\tau$ in PbPb UPC

Flow in γp interaction in pPb

[arXiv:2204.13486]

- Search for elliptic flow in γp interactions in pPb UPC events
- Overall comparable with calculations without collectivity (slight deviation at higher- p_T)

WEW

→ Z boson yields to constrain the initial state

Flow/correlations

- Investigation of the flow origin using multiparticle cumulant
- Particle production mechanism with charge balance function
- High-order cumulant $\sim v_2\{10\}$ for new hydrodynamic probes
- Femptoscopic studies for strong force interactions and H-dibaryon search in AA

IJets

- → b-jet shape for QGP medium effect of bottom quarks
- Detailed jet profile for energy redistribution in wide angle
- Z boson as non-modified probe to study jet quenching

HF & Quarkonia

- Many "firsts" measurements (Y(3S), B_c, ψ (2S) & b-> D flow, etc.) providing new insight to theory models
- \rightarrow Precision measurements of R_{AA} and v₂ for open/hidden heavy flavor

WUPC

- First constraints on g-2 of au
- → UPC offering smallest system at LHC to study collectivity

CMS HI Run2 preliminary

back-up

Recent of Run2 results

Recent Run2 results : link

MUPC

- $rac{\tau}{\tau}$ lepton pair in PbPb : [arXiv:2206.05192]
- b dijet azimuthal correlation in PbPb : [arXiv:2205.00045]
- v₂ in γp interactions in pPb : [arXiv:2204.13486]

Flow/Correlations

- strange hadron correlations in pPb and PbPb : [arXiv:2205.00080]
- charge balance function in pPb and PbPb : [CMS-PAS-HIN-21-017]
- Femtoscopy of K^0_S and $\Lambda(\overline{\Lambda})$ in PbPb : [CMS-PAS-HIN-21-006]
- higher moments using high-order cumulants in PbPb : [CMS-PAS-HIN-21-010]
- Lévy parameter of BEC in PbPb : [CMS-PAS-HIN-21-011]
- Correlator of c_n{2} & <p_T> in small systems : [CMS-PAS-HIN-21-012]
- Charm quark dynamics via multiparticle correlations in PbPb : [PRL 129 (2022) 022001]

⊠Jets

- b-jet shape in PbPb : [arXiv:2210.08547]
- dijet v_n in PbPb : [arXiv:2210.08325]
- Z boson tagged parton-medium interaction in PbPb : [PRL 128 (2022) 122301]
- jet spectra for large area in PbPb : [JHEP 05 (2021) 284]

Recent of Run2 results

Recent Run2 results : link

Heavy flavor and quarkonia

- Y R_{pPb} in pPb : [arXiv:2202.11807]
- > Observation of B_c^+ in PbPb : [PRL 128 (2022) 252301]
- Observation of B⁰_S in PbPb : [PLB 829 (2022) 137062]
- \blacktriangleright J/ ψ jet fragmentation in PbPb and pp : [PLB 825 (2021) 136842]
- Evidence of X(3872) in PbPb : [PRL 128 (2022) 032001]
- Prompt and nonprompt D⁰ in pp and pPb : [PLB 813 (2021) 136036]
- Y(1S) & Y(2S) v₂ in PbPb : [PLB 819 (2021) 136385]
- Azimuthal anisotropy of nonprompt D⁰ in PbPb : [CMS-PAS-HIN-21-003]
- Y(1S) v₂ in pPb : [CMS-PAS-HIN-21-001]
- Observation of Y(3S) in PbPb : [CMS-PAS-HIN-21-007]
- \blacktriangleright Azimuthal anisotropy for J/ ψ and ψ (2S) in PbPb : [CMS-PAS-HIN-21-008]

EW probes

- Initial state constraints with Z boson yields and v₂ in PbPb : [PRL 127 (2021) 102002]
- Drell-Yan dimuon in pPb : [JHEP 05 (2021) 182]

CMS Heavy Ion Program

- HI program at LHC : Successful data taking since the first PbPb data in 2011!
- Significant contributions to the QGP research field with Run1 + Run2
- 5–7x increased HI data with Run3 + Run4

Bottomonia in PbPb

[CMS-PAS-HIN-21-007]

[PLB 819 (2021) 136385]

- Observation of Y(3S) in PbPb! (> 5σ)
- Clear quantification of Y(1,2,3S) sequential suppression $R_{AA}(Y(1S)) > R_{AA}(Y(2S)) > R_{AA}(Y(3S))$
- Y(1S) $v_2 \approx$ 0 for PbPb
- Non-zero v2 for J/ ψ

[PRL 128 (2022) 032001]

KOREA

- Evidence of X(3872) in PbPb hint of different ratio w.r.t pp
- Caveat of large suppression for ψ (2S) in PbPb : R_{AA} \approx 0.1

VPC dijet azimuthal anisotropy

- First measurement of UPC dijets <cos(2 φ)> in PbPb
- Overestimation of ep expectation (RAPGAP) / deviation of soft-gluon radiation at high Q_T?

Dijet v_n in PbPb

- <u>Positive v_2 </u> increasing up to centrality 50% —> Sensitive to initial geometry
- $v_3 \& v_4 \approx 0 \rightarrow$ No impact from initial state geometry & medium density fluctuation