Photon-induced & diffractive physics results at CMS γ, \mathbb{P}

Excited QCD'22, Sicily 24th Oct, 2022 David d'Enterria (for the CMS Collaboration)

Color-singlet scatterings at CMS

Many interesting scatterings at the LHC are mediated by color-singlet (photon and/or 2-gluon |P) exchanges with proton/ion surviving:

Signatures: 1) excl. central system, 2) rapidity gaps, 3) near-beam fwd. protons

- PPS: CMS+TOTEM tracking (2016–) & timing (2018–) detectors inside beam pipe at ±210m Measure protons that loose ξ ~2–20% of initial momenta. Double-RP acceptance at m_x>300 GeV
- Kinematics matching (m_x, y_x) in central CMS and RPs for backgd reduction in signal searches

Rich & unique (B)SM γγ physics at the LHC

Many interesting photon fusion processes in ultraperipheral colls (UPCs):

... at the highest energies (~TeV) & lumis ($\propto Z^4 \sim 5 \cdot 10^6$ for Pb) ever reached:

System	$\sqrt{s_{_{ m NN}}}$	\mathcal{L}_{int}	$\gamma_{ m L}$	R_{A}	$E_{\gamma}^{ m max}$	$\sqrt{s_{\gamma\gamma}^{\max}}$
Pb-Pb	5.52 TeV	5 nb^{-1}	2960	7.1 fm	80 GeV	160 GeV
p-Pb	8.8 TeV	1 pb^{-1}	7450, 2960	0.7, 7.1 fm	2.45 TeV, 130 GeV	2.6 TeV
р-р	14 TeV	$150fb^{-1}$	7450	0.7 fm	2.45 TeV	4.5 TeV

- MCs available to compute EPA x-sections at LO (soon NLO) QED plus NLO QCD accuracies.
- Uncertainties: 7–15% from p,Pb charge form factor (photon flux, survival probability |S|² factor)

[gammaUPC: H.-S. Shao & DdE,arXiv:2207.03012]

3/16

Exclusive diphotons in Pb-Pb & p-p

LbL scattering & ALP searches via exclusive γγ production in UPCs: [arXiv:1812.07688]

Evt selection in Pb-Pb at 5.02 TeV (0.4 nb⁻¹): Exclusivity: No track with p_{τ} >0.1 GeV, $|\eta|$ <2.4 No neutral activity over $|\eta|$ <5.2 Photon: E_{τ} >2 GeV, $|\eta|$ <2.4 Diphoton: $m_{\tau\tau}$ > 5 GeV, p_{τ} <1 GeV, $A_{\Delta\phi}$ <0.01

Evt selection in p-p at 13 TeV (9–103. fb⁻¹, pileup): Diphoton: $m_{\gamma\gamma} > 350$ GeV, $A_{\Delta\phi} < 0.005$ Match X $\rightarrow \gamma\gamma$ mass & rapidity in central CMS/RPs: $M_X = \sqrt{s\xi_1\xi_2}$, $y_X = \frac{1}{2}\ln\frac{\xi_1}{\xi_2}$

LbL scattering, ALPs, anomalous γ couplings

PbPb: Evidence for LbL scattering & best ALP limits over m_{yy} = 5–100 GeV

LbL scattering, ALPs, anomalous γ couplings

PbPb: Evidence for LbL scattering & best ALP limits over m_{yy} = 5–100 GeV

pp (full Run-2): Searches for high-mass LbL & limits on high-mass ALPs

Tau magnetic moment via $\gamma\gamma \rightarrow \tau^+\tau^-$

Useful process to determine the anomalous magnetic dipole moment of the tau lepton: $a_r = (g_r - 2)/2$. Done at LEP, accessible at LHC via UPCs:

- Data-theory comparison of absolute and/or diff. x-sections = sensitive to (g_-2)
- Cross section in UPCs with ions enhanced by Z⁴ factor relative to e⁺e⁻.
 LHC can improve the precision on a_τ relative to best LEP (DELPHI) results
 [F.del Aguila et al. (1991), Atag&Billur (2010), Beresford&Liu (2019), Dyndal et al. (2020)]

$\gamma\gamma \rightarrow \tau^+\tau^-$ measurement in PbPb

Measurement in PbPb (5.02 TeV, 0.4 nb⁻¹) UPCs in 1ℓ +3-prong decays

CMS Experiment at the LHC, CERN Data recorded: 2015-Dec-06 21:41:27.033612 GMT Run / Event / LS: 263400 / 88515785 / 849 $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$

CMS-PHO-EVENTS-2022-003-2

• Relatively small BR $\approx 3\%$ but clean final state with controlled backgrounds ("ABCD method" regions: 1 for signal, 3 for inverted cuts): $\gamma\gamma \rightarrow \mu\mu, c\overline{c}, b\overline{b},...$

• Event Selection:

[CMS, arXiv:2206.05192]

Trigger: 1μ , 1 + tracks, zero activity in HF fwd calo

Offline:	Muon	$p_{ m T}$ $>$ 3.5 GeV for $ \eta $ $<$ 1.2		
		$p_{\mathrm{T}} > 2.5 \mathrm{GeV}$ for $1.2 < \eta < 2.4$		

Pion $p_{\rm T} > 0.5\,{\rm GeV}$ for the leading $p_{\rm T} > 0.3\,{\rm GeV}$ for the (sub-)subleading $|\eta| < 2.5$

$$au_{
m 3prong} \quad p_{
m T}^{
m vis} > 2\,{
m GeV} ext{ and } 0.2 < m_{ au}^{
m vis} < 1.5\,{
m GeV}$$

$\gamma\gamma \rightarrow \tau^+\tau^-$: Signal extraction

[CMS, arXiv:2206.05192]

Good agreement between reconstructed data & MC kinematic distributions:

$\gamma\gamma \rightarrow \tau^+\tau^-$: Signal extraction & a limits

[CMS, arXiv:2206.05192]

Good agreement between reconstructed data & MC kinematic distributions:

David d'Enterria (CERN)

$\gamma\gamma \rightarrow$ ttbar measurement in p-p

Exclusive ttbar: sensitivity to anomalous top quark e.m. couplings Never observed so far: tiny $\sigma \approx 0.2$ fb at NLO. [CMS, PAS-TOP-21-007]

- Measurement in p-p (13 TeV, 29 fb⁻¹):
 - ttbar in central CMS: *ll* & *l*+jets decays
 - Protons recontructed in RPs
- Search above dominant inclusive ttbar backgd Multivariate analysis: protons & ttbar kinem.vars.
- Cross-section limits (dominated by stats.): Upper limit $\sigma = 0.59 \text{ pb } 95\% \text{ CL}$ (1.14 pb expect)

Boosted Decision Trees outputs for 2 decays:

Rapidity-gap events in p-Pb

p-Pb collisions allow the study of both |P and γ interactions with nuclei:

Pb

P or y

Hadronic MCs (EPOS, QGSJETII, HIJING) clearly underpredict size of rap.gaps More prominent MC deficit for photon-induced collisions.

Diffraction improvements needed for description of air showers of UHE cosmic-rays Excited-QCD, Sicily, Oct. 2022 David d'Enterria (CERN)

Exclusive dijet photoproduction in PbPb

Azimuthal decorrelation of exclusive dijets in γ-lead interactions sensitive to polarization of gluons within nuclei (depend on orientation of the qq dipole wrt. impact parameter vector):

Measure angle φ between Q_T and P_T vectors. $\cos(\phi) = \vec{Q}_T \cdot \vec{P}_T / (|| \vec{Q}_T || \cdot || \vec{P}_T ||)$

 $v_2 = \langle \cos(2\phi)
angle$

Gluon polarization effects probed by analyzing 2nd Fourier moment v_2 *Hatta, et al, PRL* 116, 202301 (2016)

TMD-based calc. reproduces data (HERA-photoprod.-tuned RAPGAP does not)

- anti-kT R = 0.4 particle-flow jets.

- Two jets with $|\eta| < 2.4$, $p_T^{lead} > 30$ GeV and $p_T^{sublead} > 30$ GeV > 20 GeV.
- Hadronic activity is vetoed in backward and forward regions (2.8 < $|\eta|$ < 5.2)

[CMS, arXiv:2205.00045]

Jet-gap-jet events in p-p

Mueller-Tang jets events characterized by production of 2 jets with a large rapidity gap: Hard color-singlet exchange (t-channel 2-gluon ladder in BFKL).

Jets: anti-k_T (R=0.4), p_T > 40 GeV,
$$|\eta_{jet}| = 1.4-4.7, |\eta_1\eta_2| < 0$$

Gap: No ch.part. with $p_{\tau} > 0.2 \text{ GeV}$ and $|\eta| < 1$ between the jets (Low pileup high- β * run)

Fraction color-singlet evts.=0.5–1%: Rises w/ jj gap, flat w/ p_{τ} , saturates at LHC

Jet-gap-jet events with intact proton in p-p

Mueller-Tang jets in events where one of the proton survives:

Jets: anti-k_T (R=0.4), $p_T > 40$ GeV, $|\eta_{jet}| = 1.4-4.7, |\eta_1\eta_2| < 0$

Gap: No ch.part. with $p_{\tau} > 0.2 \text{ GeV}$ and $|\eta| < 1$ between the jets (Low pileup high- β^* run)

Forward proton: Tagged in RPs

Fraction of Mueller-Tang jets in diffractive events = $\sim 2\%$

Summary

Multiple studies of color-singlet (γ,|P) exch. processes in p-p,p-A,A-A colls. obtained via exclusivity/rap.gaps and/or fwd. proton reconstruction:

Evidence for LbL scatt., competitive limits: ALPs, anomal. quartic γ couplings

• Observation of $\gamma\gamma \rightarrow \tau\tau$, future (g–2), constraints. Search for $\gamma\gamma \rightarrow ttbar$

Rap. gaps in p-A. Exclusive dijet photoproduction in A-A. Jet-gap-jet in p-p

16/16

Back-up slides

$\gamma\gamma$ theoretical cross sections

Cross section:

$$\sigma(\mathbf{A} \to \mathbf{B} \xrightarrow{\gamma\gamma} \mathbf{A} X \to \mathbf{B}) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{\mathrm{d}^2 N_{\gamma_1/\mathbf{Z}_1,\gamma_2/\mathbf{Z}_2}^{(\mathbf{A} \to \mathbf{B})}}{\mathrm{d}E_{\gamma_1} \mathrm{d}E_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

Effective two-photon luminosity:

 $\frac{\mathrm{d}^2 N_{\gamma_1/\mathbf{Z}_1,\gamma_2/\mathbf{Z}_2}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no}\,\mathrm{inel}}\left(|\boldsymbol{b}_1 - \boldsymbol{b}_2|\right) N_{\gamma_1/\mathbf{Z}_1}(E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/\mathbf{Z}_2}(E_{\gamma_2}, \boldsymbol{b}_2)$

 $\times \theta(b_1 - \epsilon R_{\rm A})\theta(b_2 - \epsilon R_{\rm B})$

No hadronic/inelastic interaction probability density:

p,A form factors & γ fluxes: ChFF, EDFF

Electric dipole form factor (EDFF)

Same as STARlight

$$N_{\gamma/Z}^{\text{EDFF}}(E_{\gamma}, b) = \frac{Z^2 \alpha}{\pi^2} \frac{\xi^2}{b^2} \left[K_1^2(\xi) + \frac{1}{\gamma_{\text{L}}^2} K_0^2(\xi) \right] \qquad \xi = \frac{E_{\gamma} b}{\gamma_{\text{L}}}$$

Charge form factor (ChFF)

$$N_{\gamma/Z}^{\rm ChFF}(E_{\gamma},b) = \frac{Z^2 \alpha}{\pi^2} \left| \int_0^{+\infty} \frac{dk_{\perp} k_{\perp}^2}{k_{\perp}^2 + E_{\gamma}^2 / \gamma_{\rm L}^2} F_{\rm ch,A} \left(\sqrt{k_{\perp}^2 + E_{\gamma}^2 / \gamma_{\rm L}^2} \right) J_1(bk_{\perp}) \right|^2$$

- Main difference comes from the $b < R_A$ regime
- EDFF photon number density is divergent at b=0
 - Need a (arbitrary) cutoff when convoluting with ME

γγ effective luminosities

