

Recent LHCb results on multiquark states

<u>Rosa Anna Fini</u> (INFN – Bari, Italy) on behalf of the LHCb collaboration

> Excited QCD 2022 – Giardini Naxos Sicily, Oct 23-29, 2022

Outline

Introduction on LHCb experiment

 Recent results on Tetraquarks and Pentaquarks at LHCb

Prospects and summary

The LHCb experiment at LHC

A forward spectrometer designed for the study of heavy flavour physics

Pseudorapidity coverage: 2 < η < 5 , η = -log(tan(θ /2) (θ = polar angle relative to the beam line)

[LHCb, JINST 3 (2008) S08005, Int. J. Mod. Phys. A30 (2015) 1530022]

LHCb performance

+

Precision studies of b and c-hadron decays

Low background good mass resolution & particle identification

Vertexing & Tracking: $\sigma_p/p \sim 0.4\% - 0.6\%$ (p from 5 GeV/*c* to 100 GeV/*c*), $\sigma_{IP} < 20\mu m$

Particle identification: $\pi/K/p$ (RICH), $\pi^{0}/e/\gamma$ (E/HCAL), μ (MUON) High yields

efficient trigger and selection

Trigger L0 hardware, high p_t *e*/γ/*h*/μ

HLT1&HLT2 software, event reconstruction ~90% efficient for dimuon channels

Excited QCD 2022

LHCb Data Taking

p-p collisions @ LHC (levelled inst. lumi \mathcal{L} ~4x10³²cm⁻²s⁻¹)

Run 1 (2011-2012): 3 fb⁻¹ @ 7-8 TeV Run 2 (2015-2018): 6 fb⁻¹ @ 13 TeV

More than 9 fb⁻¹ accumulated in Run1 + Run 2

- $\sigma_{c\overline{c}}$ ~2.4 mb [LHCb, JHEP 1603 (2016) 159] $\sigma_{b\overline{b}}$ ~110 mb [LHCb, PRL 118 (2017) 052002] (13 TeV, LHCb acceptance)
- > A huge amount of $b\overline{b}$ and $c\overline{c}$ pair have been produced:

$$\sim 10^{12} b\overline{b}, \sim 10^{13} c\overline{c}$$

LHCb Physics

- Indirect search for New Physics via precision measurements of CKM, CPV and RD (Lepton Flavour Universality Violation)
- Direct search of new particles beyond SM
- QCD + EW precision measurements at large rapidity
- Heavy-ion and fixed target physics

Hadron spectroscopy:

60 new hadrons at LHCb, 23 new exotic hadrons at LHC

Exotic hadrons

Search/Observations of exotic states, i.e. Particles with an alternative quark content with respect to conventional mesons (made of quarks-antiquarks pairs) and baryons (made of three quarks).

Hadronic states containing four quarks (tetraquarks) and five quarks (pentaquarks) have been observed/discovered by LHCb during last years.

A discovery of a long-lived exotic state, stable with respect to the strong interactions, would be intriguing.

Tetraquarks at LHCb

- Study of the doubly charmed tetraquark T_{cc}^+ , LHCb Collaboration, R. Aaij *et al.*, Nature Commun. 13 (2022) 1, 3351
- Observation of an exotic narrow doubly charmed tetraquark, LHCb Collaboration, R. Aaij *et al.*, Nature Phys. 18 (2022) 7, 751-754
- Observation of Multiplicity Dependent Prompt $\chi_{c1}(3872)$ and $\psi(2S)$ Production in pp Collisions, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 126 (2021) 9, 092001
- Observation of structure in the J/ψ/-pair mass spectrum, LHCb Collaboration, R. Aaij et al., Sci.Bull.
 65 (2020) 23, 1983-1993
- Search for beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant-mass spectrum, LHCb Collaboration, R. Aaij *et al.*, JHEP 10 (2018) 086
- Dalitz plot analysis of $B^0 \to \overline{D}^0 \pi^+ \pi^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 92 (2015) 3, 032002
- Measurement of the resonant and CP components in $\overline{B}^0 \to J/\psi \pi^+\pi^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 90 (2014) 1, 012003
- Measurement of resonant and CP components in $\bar{B}^0_s \rightarrow J/\psi \pi^+\pi^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 89 (2014) 9, 092006
- Observation of $\bar{B}_{(s)} \rightarrow J/\psi f_1(1285)$ Decays and Measurement of the $f_1(1285)$ Mixing Angle, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 112 (2014) 9, 091802
- Determination of the X(3872) meson quantum numbers, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 110 (2013) 222001

Tetraquarks at LHCb

- Study of the doubly charmed tetraquark T_{cc}^+ , LHCb Collaboration, R. Aaij *et al.*, Nature Commun. 13 (2022) 1 3351
- Observation of an exotic narrow doubly charmed tetraquark, LHCb Collaboration, R. Aaij *et al.*, Nature Phys. 18 (2022) 7, 751-754
- Observation of Multiplicity Dependent Prompt $\chi_{c1}(3872)$ and $\psi(2S)$ Production in pp Collisions, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 126 (2021) 9, 092001
- Observation of structure in the J/ψ/-pair mass spectrum, LHCb Collaboration, R. Aaij et al., Sci.Bull.
 65 (2020) 23, 1983-1993
- Search for beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant-mass spectrum, LHCb Collaboration, R. Aaij *et al.*, JHEP 10 (2018) 086
- Dalitz plot analysis of $B^0 \to \overline{D}{}^0 \pi^+ \pi^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 92 (2015) 3, 032002
- Measurement of the resonant and CP components in $\overline{B}^0 \to J/\psi \pi^+\pi^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 90 (2014) 1, 012003
- Measurement of resonant and CP components in $\bar{B}^0_s \rightarrow J/\psi \pi^+\pi^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 89 (2014) 9, 092006
- Observation of $\bar{B}_{(s)} \rightarrow J/\psi f_1(1285)$ Decays and Measurement of the $f_1(1285)$ Mixing Angle, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 112 (2014) 9, 091802
- Determination of the X(3872) meson quantum numbers, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 110 (2013) 222001

Doubly charmed tetraquark

Search for a long-lived exotic state

A hadron with two heavy quarks and two light antiquarks can be a good candidate ⁽¹⁾

The observation of the Ξ_{cc}^{++} baryon containing two *c* quarks [LHCb: Phys. Rev. Lett. 119 (2017) 112001, Phys. Rev. Lett. 121 (2018) 162002, J. High Energy Phys. 02 (2020) 049] stimulated the search of a tetraquark with mass close to the sum of the masses of the D^0 and D^{*+} mesons ⁽²⁾

(1) A.V. Manohar and M. B. Wise, Nucl. Phys. B399 (1993) 17-33, L. Heller and J.A. Tjon, Phys. Rev D35 (1987) 969-974
(2) M. Karliner and J. L. Rosner, Phys. Rev. Lett. 119 (2017) 202001

Search in the D⁰ D⁰π⁺ mass spectrum

p-p collision data at centre of mass energies of 7, 8, 13 TeV

Full Run1+Run2 sample: integrated Luminosity of 9 fb⁻¹

Selection of events with two good quality D^0 candidates $D^0 \rightarrow K^- \pi^+$

combined with good quality π^+ candidates and requiring that all originate from the same primary vertex (kinematic fit on the $D^0 D^0 \pi^+$ system).

Mass of each *D^o* candidate constrained to the known value (improve mass resolution)

Observation of $T^+_{cc} \rightarrow D^0 D^0 \pi^+$

Narrow peak near D^*+D^0 mass threshold

Maximum-likelihood fit:

<u>Signa</u>l (convolution of the detector resolution assumed gaussian with a resonant shape relativistic P-wave BW) +

<u>Background</u> (two-body phase space above $D^{*+}D^{0}$ mass and a positive-second order polynomial)

LHCb, Nature Commun. 13 (2022) 1, 3351

Study of T^+_{cc} state

LHCb, Nature Commun. 13 (2022) 1, 3351

Location of the peak relative to the D^*+D^0 mass threshold:

Consistent with a T^+_{cc} tetraquark ground state with $J^p=1^+$

Narrowest exotic state observed to date, mass = 3,875 MeV Minimal quark content is: $cc\overline{u}\overline{d}$

Double-charged tetraquark

LHCb-PAPER-2022-026

First observation of a doubly charged open-charm tetraquark state *T(2900)*⁺⁺ and its isospin partner *T(2900)*⁰ (paper in preparation) Joint analysis of $B^0 \rightarrow D^0 D_*^+ \pi^-$

and

$$B^+ \to D^- D_s^+ \pi^+$$

$$c\overline{s}u\overline{d}$$

csud

$D_s^+\pi^+$ and $D_s^+\pi^-$ mass spectra

LHCb-PAPER-2022-026, LHCb-PAPER-2022-027

Pentaquarks at LHCb

- Evidence for a new structure in the $J/\psi p$ and $J/\psi \overline{p}$ systems in $B_s^0 \to J/\psi p \overline{p}$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 128 (2022) 062001
- Evidence of a $J/\psi\Lambda$ structure and observation of excited Ξ^- states in the $\Xi_b^- \to J/\psi\Lambda K^-$ decay, LHCb Collaboration, R. Aaij *et al.*, Sci.Bull. 66 (2021) 1278-1287
- Observation of the $\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-$ decay, LHCb Collaboration, R. Aaij *et al.*, Phys.Lett.B 815 (2021) 136172
- First observation of the decay $\Lambda_b^0 \to \eta_c(1S)pK^-$, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 102 (2020) 11, 112012
- Observation of a narrow pentaquark state, $P_c(4312)^+$, and of two-peak structure of the $P_c(4450)^+$, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 122 (2019) 22, 222001
- Observation of the decay $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$, LHCb Collaboration, R. Aaij *et al.*, Phys.Lett.B 784 (2018) 101-111
- Search for weakly decaying *b*-flavored pentaquarks, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 97 (2018) 3, 032010
- Evidence for exotic hadron contributions to $\Lambda_b^0 \rightarrow J/\psi p\pi^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 117 (2016) 8, 082003, Phys.Rev.Lett. 117 (2016) 10, 109902 (addendum), Phys.Rev.Lett. 118 (2017) 119901 (addendum)
- Model-independent evidence for $J/\psi p$ contributions to $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 117 (2016) 8, 082002
- Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 115 (2015) 072001

Pentaquarks at LHCb

- Evidence for a new structure in the $J/\psi p$ and $J/\psi \overline{p}$ systems in $B_s^0 \to J/\psi p \overline{p}$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 126 (2022) 002001
- Evidence of a $J/\psi\Lambda$ structure and observation of excited Ξ^- states in the $\Xi_b^- \to J/\psi\Lambda K^-$ decay, LHCb Collaboration, R. Aaij *et al.*, Sci.Bull. 66 (2021) 1278-1287
- Observation of the $\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-$ decay, LHCb Collaboration, R. Aaij *et al.*, Phys.Lett.B 815 (2021) 136172
- First observation of the decay $\Lambda_b^0 \to \eta_c(1S)pK^-$, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 102 (2020) 11, 112012
- Observation of a narrow pentaquark state, $P_c(4312)^+$, and of two-peak structure of the $P_c(4450)^+$, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 122 (2019) 22, 222001
- Observation of the decay $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$, LHCb Collaboration, R. Aaij *et al.*, Phys.Lett.B 784 (2018) 101-111
- Search for weakly decaying *b*-flavored pentaquarks, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.D 97 (2018) 3, 032010
- Evidence for exotic hadron contributions to $\Lambda_b^0 \rightarrow J/\psi p\pi^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 117 (2016) 8, 082003, Phys.Rev.Lett. 117 (2016) 10, 109902 (addendum), Phys.Rev.Lett. 118 (2017) 119901 (addendum)
- Model-independent evidence for $J/\psi p$ contributions to $\Lambda_b^0 \to J/\psi p K^-$ decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 117 (2016) 8, 082002
- Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays, LHCb Collaboration, R. Aaij *et al.*, Phys.Rev.Lett. 115 (2015) 072001

Pentaquarks in $J/\psi p$ system

Search for pentaquarks in^(*)

 $B_s^0 \to J/\psi p\overline{p}$

p-p collision data at centre of mass energies of 7, 8, 13 TeV Full Run1+Run2 sample: integrated Luminosity of 9 fb⁻¹

Selection of events with two pairs of oppositely charged tracks:

- first pair consistent with muons from J/ψ decay
- second pair identified as protons

Common vertex significantly displaced from its associated primary *p-p* vertex (PV)

^(*) Observed for the first time by LHCb: Phys. Rev. Lett. 122 (2019) 191804

B⁰ and B⁰_s mass spectra

LHCb, Phys. Rev. Lett. 128 (2022) 062001

Analysis of *B*⁰_s signal

LHCb, Phys. Rev. Lett. 128 (2022) 062001

Evidence for a BW resonance state Pentaquarklike $J^p=1/2^+$ hypotesis:

 $M_{P_c} = 4337^{+7+2}_{-4-2} MeV$

$$\Gamma_{P_c} = 29^{+26+14}_{-12-14} MeV$$

Strange pentaquark candidate

Study of the decay:

 $B^- \to J/\psi \Lambda \overline{p}$

(in preparation) Narrow resonance in $J/\psi \Lambda$ system consistent with a strange Pentaquark $J^{p}=1/2^{-1}$

$$M_{P_c} = 4338.2 \pm 0.7 \pm 0.4 MeV$$

 $\Gamma_{P_c} = 7.0 \pm 1.2 \pm 1.3 MeV$

LHCb-PAPER-2022-031

Conclusions and Outlook

LHCb has been continually producing interesting results in exotic states

The full Run 1 + Run 2 data still not fully exploited

LHCb physics program for new Upgrade 2 approved
 ➤ 300 fb⁻¹ expected at the end of Run5

Precision determination of the characteristics of observed hadrons and observation of new states expected next years

Conclusions and Outlook

LHCb has been continually producing interesting results in exotic states

The full Run 1 + Run 2 data still not fully exploited

Run 3 started this year with LH06 upgraded detector > 50 fb⁻¹ expected at the and of Run4

LHCb physics program for new Upgrade 2 approved
 ➢ 300 fb⁻¹ expected at the end of Run5

Precision determination of the characteristics of observed hadrons and observation of new states expected next years