

Latest results on hadronic resonance production with ALICE at the LHC

Angela Badalà for the ALICE Collaboration INFN Sezione di Catania

Talk outline

- Motivation
- Resonance results
- Summary and future

Relativistic heavy-ion collision evolution

- Initial hot and dense partonic matter rapidly expands
- Collective flow develops and the system cools down
- Phase transition (crossover) to hadron gas takes place at T_{critical}
- Chemical freeze-out takes place when inelastic collisions stop
- Kinetic freeze-out happens after the chemical freeze-out once elastic collisions stop

ALICE

Relativistic heavy-ion collision evolution

- Initial hot and dense partonic matter rapidly expands
- Collective flow develops and the system cools down
- Phase transition (crossover) to hadron gas takes place at T_{critical}
- Chemical freeze-out takes place when inelastic collisions stop
- Kinetic freeze-out happens after the chemical freeze-out once elastic collisions stop

INFN

Focus on this region with resonance studies

Hadronic resonances in ALICE

lifetime

Resonances have lifetimes of about a few $f_m/c \rightarrow \tau_{\text{resonance}} \sim \tau_{\text{fireball}} > \tau_{\text{hadronic-phase}}$

NFŃ

INFŃ **Hadronization and thermal equilibrium**

 At hadronization, system is close to thermal equilibrium A rapid freeze-out takes place at the phase boundary Hadron yields described well by thermal model over 9 order of magnitude Even loosely bound objects as light nuclei are well described

Resonances in hadronic phase

Re-scattering (elastic or pseudo-elastic scattering of the decay products) and regeneration modify the yield of reconstructible resonances.

• **Regeneration**:

pseudo-elastic scattering of decay products → increase of resonance measured yield

• **Re-scattering**:

Resonance decay products undergo elastic scattering or pseudo elastic scattering through different resonances \rightarrow Resonance can not be reconstructed through invariant $mass \rightarrow decrease$ of resonance measured yield

Resonance suppression: hadronic phase effects

Ratio resonance yield to ground-state hadrons with similar quark content

Presence of hadronic interaction: re-scattering dominant effect compared to regeneration

What drives this decrease?

- The **lifetime of the resonance**
- The **cross sections for re-scattering and regeneration** processes
- The **time duration** of the **hadronic phase**

Small collision systems (pp and p–Pb):

➢ Used as a **baseline** for heavy-ion collisions

➢ **Recent results** show some **typical** phenomena **of heavy-ion collisions (collectivity, strangeness enhancement, hint of resonance suppression in high multiplicity events, etc..)**

Collision systems

Run3: 2022 - **Pb**−**Pb** collisions Hot QCD matter studies $\sqrt{s_{NN}}$ = 2.76, 5.02 TeV + $Xe-Xe \sqrt{s_{NN}} = 5.44 \text{ TeV}$

p−**Pb** collisions Cold nuclear matter effects $\sqrt{s_{NN}}$ = **5.02, 8.16 TeV**

pp collisions Standard QCD reference \sqrt{s} = **0.9, 2.76, 5.02, 7, 13 TeV**

Are QGP
effects reasons absent he **effects really absent here?**

Run 1: 2010-2013

Run 2: 2015- 2018

V0A and V0C

- 2 arrays of plastic scintillator hodoscopes
- Trigger, Centrality/Multiplicity estimator

A. Badalà - Excited QCD 2022 - Giardini- Naxos – 24-28 October 2022 9

ALICE Coll. JINST 9 (2014) 1100

Resonance reconstruction

Resonance are reconstructed via their **invariant mass**

$$
M_{inv} = \sqrt{(E_1 + E_2)^2 - |\vec{p}_1 + \vec{p}_2|^2}
$$

Uncorrelated background is estimated via **event -mixing** or **like-sign** techniques

PID from TPC, TOF for the **daughter tracks. V0 or Cascade** $\mathbf{topology} \ \text{ for } \mathrm{K^0}_\mathrm{s}, \mathrm{\Lambda}, \Xi$

Residual background Correlated pairs or misidentified decay products, usually modelled by a polynomial function

Signal: Fit the event-mixing (or like-sign) subtracted distribution with a Breit-Wigner or Voigtian function (signal function) and the residual background

Yields are calculated integrating the signal function

Hardening of spectra with increasing centrality of the collision \rightarrow caused by radial flow. Observed for all produced hadrons.

A. Badalà - Excited QCD 2022 - Giardini- Naxos – 24-28 October 2022 11

Hardening of p_T spectra and maximum shifts with increasing multiplicity \rightarrow flow-like effects in small collision systems

ALICE

Ξ **(1530)0 ^p^T spectra**

INFN

Similar behavior as K*

ALI-PREL-516641

NFN

Comparison with hydrodynamic models:

- Spectral shapes are in agreement with Blast-Wave model (from π , K, p)
- MUSIC +SMASH afterburner predictions underestimate the measurements

INFN $\Sigma(1385)^{\pm}$ p_{T} spectra in Pb−Pb **collisions**

arXiv:2205.13998

A. Badalà - Excited QCD 2022 - Giardini- Naxos – 24-28 October 2022 14

ALICE

EPOS3 [1] :

Semicentral and peripheral collisions:

No significant difference is observed between the calculation with the UrQMD afterburner and without it. Data are described within 20-30%

The $\Sigma(1385)^{\pm}$ production is overestimated by $\sim 60\%$ in most central collisions and $p_T < 5$ GeV/*c*

PYTHIA8/Angantyr [2]:

The $\Sigma(1385)^{\pm}$ production is underestimated by a factor 3 to 4 up to $p_T \sim 6\text{-}7 \text{ GeV}/c$

[1] K. Werner et al., Phys. Rev. C89 (2014) 064903 [2] T. Sjöstrand et al., Compt. Phys. Comm. 191 (2015) 159

Mean transverse momentum

ALI-PREL-516652

INFN

A. Badalà - Excited QCD 2022 - Giardini- Naxos – 24-28 October 2022 16

Mean transverse momentum provides firstorder characterization of the spectral shapes

 $\langle p_T \rangle$ values increase with increasing multiplicity and are higher for the higher centre-of-mass energy

Models that do not include a hadronic afterburner do not reproduce the data

Integrated yields

Resonance production is driven by the multiplicity. It doesn't depend on the system size or the centre of mass energy

Ratio Σ***/**π

arXiv:2205.13998

Suppression of $\Sigma^{* \pm}/\pi^{\pm}$ yield ratio in central Pb−Pb collisions wrt pp and p−Pb

Thermal model and EPOS + UrQMD overestimate the measurement

Suppression at al level of 3.6σ in 0−10% central Pb−Pb collisions with respect to statistical thermal model

Ratio K*/K

 K^{*+} shows a ~55% suppression going from peripheral Pb−Pb collisions to most central Pb−Pb → consistent with the re-scattering of the daughters as the dominant effect

Models with re-scattering effects qualitatively describe the data

 K^{*+} measurement is consistent with previous results for K^{*0}

> MUSIC: D. Olinychenko, arXiv: 2105.07539 PCE: A. Motornenko, Phys. Rev. C102 (2020) 024909 GCSM: V. Vovchenko, Phys. Rev. C 100 (2019) 054906

Ratio Λ***/**Λ

- central Pb−Pb collisions → Consistent with the rescattering of the daughters as the dominant effect
- Λ^* suppression larger than K^{*+} (~ 55%) although $\tau(\Lambda^*)$ $\sim 3\tau(K^*) \rightarrow$ Regeneration may play a more important role in K^* than in Λ^*
- MUSIC + SMASH reproduces the multiplicity suppression trend
- Thermal models overestimate the ratio in central Pb−Pb collisions

MUSIC: D. Olinychenko, arXiv: 2105.07539 PCE: A. Motornenko, Phys. Rev. C102 (2020) 024909 GCSM: V. Vovchenko, Phys. Rev. C 100 (2019) 054906

Probing the late hadronic phase

Lifetime(fm/*c*): **ρ(1.3)** < **K*0(4.2)** < **Σ*(5.5)** < **Λ*(12.6)** < **Ξ*(21.7)** < φ**(46.2)**

INFŃ

 Ξ^{\star}/Ξ and ϕ/K (longer lifetime) no significant centrality dependence across the different collision systems.

 ρ^0/π , K^{*0}/K , Σ^*/Λ , Λ^*/Λ in Pb–Pb: suppression in central Pb−Pb collisions -> dominance of re-scattering over regeneration.

In most cases EPOS3 with UrQMD as afterburner describes the trend qualitatively

A. Badalà - Excited QCD 2022 - Giardini- Naxos – 24-28 October 2022 21

A.G. Knospe et al., Phys. Rev. C 93 (2016) 014911

Measuring the lifetime of the hadronic phase

Estimation of the lower limit of the timespan between chemical and kinetic freeze-out by exponential law:

$$
r_{\text{kin}} = r_{\text{chem}} \times \exp(-(\tau_{\text{kin}} - \tau_{\text{chem}})/\tau_{\text{res}}
$$

- $r_{\rm kin}$ = measured yield ratios in Pb–Pb collisions
- r_{chem} = measured yield ratios in pp collisions
- τ_{res} = lifetime of resonance

Assumptions:

- \triangleright Simultaneous freeze-out for all particles
- \triangleright Negligible regeneration

ALICE

K*(892)±/K0 ^s ratio versus event multiplicity

Suppression of **K*±/K0 ^s** with increasing multiplicity **in pp** and **Pb**−**Pb** collisions

K*± analysis in pp@13 TeV confirms, with lower systematic uncertainties, suppression observed for K*0 (Phys. Lett. B807 (2020) 135501)

K^{*±}/K^o_s for low and high **multiplicity classes**

NFN Model comparison for K*(892)±/K0 s ratio versus event multiplicity

*Model prediction estimated for K*0*

Best description: EPOS-LHC for pp and HRG in Partial Chemical Equilibrium[1] for Pb−Pb collisions

EPOS-LHC: same treatment for pp, pA and AA systems → two regions: core (high density) and corona (low density)

Core can form in pp collisions: critical density reached due to parton multiple scattering

HRG-PCE: A. Motornenko et al., Phys. Rev. C102 (2020) 024909 EPOS-LHC: T. Pierog et al, Phys. Rev. C92 (2015) 034906

ALICE

ALICE has measured a comprehensive set of resonance particles in pp, p−Pb and Pb−Pb collisions at various energies

Resonance production is **independent** of the collision **energy** and system and it is **driven** by the event **multiplicity**

Re-scattering is the **dominant process** in the hadronic phase for short – lived resonances (τ<15 fm/*c*)

Rough estimate of **lifetime of hadronic phase** is obtained. It shows a smoothly increase with multiplicity

Hint of suppression for short-lived resonances in **high multiplicity pp and p**−**Pb** collisions. **Hadronic phase presence? QGP formation?**

Thank you

Backup slides

Strangeness production

Smooth evolution vs. multiplicity in pp, p−Pb, Xe−Xe and Pb−Pb collisions from different energies

Strangeness enhancement increases with strangeness content