

Understanding hadronization through measurements of light-flavor hadron production with ALICE

Excited QCD, Giardini Naxos – 24 Oct. 2022

- At LHC energies same amount of matter and antimatter is measured ($\mu_{\rm B} \sim 0$)
- Light-flavor hadrons are the bulk of particle production at the LHC
- (Anti)(hyper)nuclei are also produced
- Results on LF production fundamental to:
 - study collectivity \rightarrow heavy-ion collisions
 - investigate microscopic production models → large + small collision systems
- Production mechanism usually described with several phenomenological models
 - Statistical hadronization, coalescence, string fragmentation, core-corona, ropes hadronization, ...

Statistical hadronisation model (SHM)

ПП

- Hadrons emitted during phase transition from a system in statistical and chemical equilibrium
- $dN/dy \propto \exp(-m/T_{chem})$
 - nuclei (large m): large sensitivity to T_{chem}
- In Pb—Pb collisions works very well for all LF species
 - including nuclei and hypernuclei, loosely bound states (typical binding energy of nuclei ~ few MeV)

Andronic et al., Nature 561 (2018) 321–330 NPA 971 (2018) 1-20

Hadron coalescence models

- Hadrons are formed by coalescence of quarks close in phase space
- Yields of hadrons are given by:

PRC 68 (2003) 034904 PRL 90 (2003) 202302 PLB 792 (2019) 132-137

- $N_{h}^{\text{coal}} = g_{h} \int \left[\prod_{i=1}^{n} \frac{1}{g_{i}} \frac{p_{i} \cdot d\sigma_{i}}{(2\pi)^{3}} \frac{d^{3}\mathbf{p}_{i}}{E_{i}} f(x_{i}, p_{i}) \right] \times f^{W}(x_{1}, \dots, x_{n} : p_{1}, \dots, p_{n})$ (iso)spin
 (iso)spin
 degeneracy factor
 phase-space
 covariant distribution
 functions of quarks Wigner density of the bound state
- Bound state wave function usually approximated by a Gaussian (also other WF available)

VO trigger, multiplicity estimators
 (Minimum Bias: 0 – 100%, High Multiplicity: 0 – 0.1%)

- pp, p—Pb, Pb—Pb collisions at various centre-of-mass energies
- excellent tracking and PID capabilities over a broad momentum range
 - TPC: $\sigma_{dE/dx} \sim 5.5\%$ for pp $\sigma_{dE/dx} \sim 7\%$ for Pb—Pb
 - TOF: $\sigma_{\rm PID} \sim$ 70 ps for pp $\sigma_{\rm PID} \sim$ 60 ps for Pb–Pb
- low material budget

ТЛП

- precise p_T and centrality differential measurements of various light-flavour particle species in Pb—Pb collisions
- complemented by a large number of multiplicity dependent measurements in pp and p–Pb

Light-flavor particle production with ALICE

- precise p_T and centrality differential measurements of various light-flavour particle species in Pb—Pb collisions
- complemented by a large number of multiplicity dependent measurements in pp and p–Pb

LARGE SYSTEMS

 allows for the study of collective motion for noncentral collisions (flow coefficients)

- allows for the study of hadronisation mechanisms
- hypernuclei production is a key tool to distinguish among model predictions

Particle production in Pb–Pb collisions

Flattening of spectral shape at low p_T more pronounced for heavier particles → hint for collective motion (radial flow)

(Anti)(hyper)nuclei production in Pb–Pb collisions

Hardening with increasing centrality – as seen for other light-flavor hadrons \rightarrow hint for collective motion (radial flow)

chiara.pinto@tum.de

ALI-PREL-327164

5

 $p_{\tau}^{6} (\text{GeV}/c)^{7}$

0.2

0.1

Pb—Pb collisions

(Anti)(hyper)nuclei production in Pb–Pb collisions

Initial space anisotropy in non-central AA collisions

 azimuthal anisotropy of particle emission wrt symmetry plane

Particle azimuthal distribution can be espressed as a Fourier series

 $\frac{dN}{d\varphi} \propto 1 + 2\sum_{n \ge 1} v_n \cos(n(\varphi - \Psi_n))$ $\begin{pmatrix} \Psi_n = n^{th} \text{ symmetry plane} \\ \varphi = \text{azimuthal angle} \\ v_n = \text{flow coefficients} \end{pmatrix} \quad \begin{array}{l} v_2: \text{ elliptic flow} \\ v_3: \text{ triangular flow} \\ \end{array}$

Flow reflects conversion of initial state spatial anisotropy into final state anisotropies in momentum space

Initial space anisotropy in non-central AA collisions

 azimuthal anisotropy of particle emission wrt symmetry plane

Particle azimuthal distribution can be espressed as a Fourier series

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n \ge 1} v_n \cos(n(\varphi - \Psi_n))$$

$$= n^{th} \text{ symmetry plane}$$

$$= \text{ azimuthal angle}$$

$$= \text{ flow coefficients}$$

$$v_2: \text{ elliptic flow}$$

$$v_3: \text{ triangular flow}$$

Flow reflects conversion of initial state spatial anisotropy into final state anisotropies in momentum space

- Mass ordering at low $p_T \rightarrow$ interplay between radial flow and anisotropic expansion of the system
- Intermediate p_T : baryon-meson grouping \rightarrow hadron formation via quark coalescence in this range

 Ψ_n

φ

= flow coefficients

Initial space anisotropy in non-central AA collisions

 azimuthal anisotropy of particle emission wrt symmetry plane

Particle azimuthal distribution can be espressed as a Fourier series

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n \ge 1} v_n \cos(n(\varphi - \Psi_n))$$

$$= n^{th} \text{ symmetry plane}$$

$$= \text{azimuthal angle}$$

$$v_2: \text{ elliptic flow}$$

$$v_3: \text{ triangular flow}$$

Flow reflects conversion of initial state spatial anisotropy into final state anisotropies in momentum space

- Mass ordering at low $p_T \rightarrow$ interplay between radial flow and anisotropic expansion of the system
- Intermediate p_T: baryon-meson grouping → hadron formation via quark coalescence in this range
- Expectations from relativistic hydrodynamics are fulfilled

chiara.pinto@tum.de

 Ψ_n

Light-flavor particle production with ALICE

ТЛП

- precise p_T and centrality differential measurements of various light-flavour particle species in Pb—Pb collisions
- complemented by a large number of multiplicity dependent measurements in pp and p–Pb

LARGE SYSTEMS

• allows for the study of collective motion for noncentral collisions (flow coefficients)

- allows for the study of hadronisation mechanisms
- hypernuclei production is a key tool to distinguish among model predictions

Light-flavor particle production in small systems

- Progressive evolution of spectral shape at high $p_{\rm T}$ with increasing collision energy
- Hard processes become dominant in the production of high-p_T particles

pp collisions

chiara.pinto@tum.de

Light (anti)nuclei in small systems

ТШ

JHEP 01 (2022) 106

HM pp @ 13 TeV

 Focus on the HM data sample → narrow multiplicity interval covered

chiara.pinto@tum.de

Light (anti)nuclei in small systems

ТЛП

JHEP 01 (2022) 106

HM pp @ 13 TeV

- Focus on the HM data sample → narrow multiplicity interval covered
- Precise measurement of the emission source size r_{core} using femtoscopy is available

ightarrow crucial to test the coalescence model

Hadron-hadron correlation

Nature 588 (2020) 232-238

- ALICE is pioneering the study of strong interactions using femtoscopic correlations
- Momentum correlations can be employed to explore two-particle dynamics
- Correlation function depends on two ingredients:
 - emission source function (pp collisions: r_{eff} ~ 1 fm, Gaussian profile)
 - two-particle relative wave function (quantum statistics + Coulomb + strong interactions)

Measuring $C(k^*)$, fixing the source $S(r^*)$, study the interaction

relative momentum: $k^* = \frac{1}{2} |\overrightarrow{p_1} - \overrightarrow{p_2}|$

CATS Framework: D. Mihaylov et al., Eur. Phys. J. C78 (2018) 394

- proton-proton (p-p) correlation is well known
- p-p correlation function properly described by using:
 - Fermi-Dirac wave function
 - Coulomb interaction
 - strong interaction
- Measurement of correlation function done for several $m_{\rm T}$ intervals
- If the interaction is well known, hadron-hadron correlation can be used to measure the radius of the emitting source

Characterization of the emission source size

- Assumption: particle emission from a gaussian core source
- Short-lived strongly decaying resonances (cτ ≤ 10 fm) also taken into account: mainly Δ (Σ*) resonances for protons (Λ)
- Same m_T scaling obtained from both p-p and p-Λ correlations → hint for universal emission source of baryons

HM pp @ 13 TeV

...putting pieces together

Compute coalescence probability using:

$$B_A(p_T^p) = E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} \left/ \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^A \right|_{p_T^p = p_T^A/A}$$

...putting pieces together

Compare with predictions of coalescence model

 $B_A(p_T^p) = E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} \left/ \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^A \right|_{p_T^p = p_T^A/A}$

...putting pieces together

ТЛП

Testing coalescence model

 B_A measurements sensitive to the nuclear wave function

HM data sample also used for the precise measurement •

ment of the source radii

$$emission \\ source size \\ \downarrow \\ B_2(p_T) \approx \frac{3}{2m} \int d^3q D(q) e^{-R^2(p_T) q^2} \\ D(q) = \int d^3r |\phi_d(r)|^2 e^{-iq \cdot r}$$

deuteron wave function (size d = 3.2 fm)

Different wave functions are tested:

- Hulthen: favoured by low-energy scattering experiments
- Gaussian: best description of currently available ALICE data

Blum, Takimoto, PRC 99 (2019) 044913 Scheibl, Heinz, PRC 59 (1999) 1585-1602 Kachelrieß et al., EPJA 1 (2020) 4

HM pp @ 13 TeV

 $B_2($

The hypertriton


```
r_{\Lambda H (np\Lambda)}: 4.9 fm (B_{\Lambda}= 2.35 MeV)
r_{\Lambda H (d\Lambda)}^{3}: ~10 fm (B_{\Lambda} ~ 0.13 MeV)
```

[1] M. Danysz, J. Pniewski, Philos. Mag. 44 348 (1953)
[2] Hildenbrand F. et al., PRC 100 (2019) 034002
[3] arXiv:2209.07360

- Lightest known hypernucleus
- Bound state of $p + n + \Lambda$
- Discovered in early 50s by M. Danysz and J. Pniewski [1]
- Two-body halo nucleus
- $^{3}_{\Lambda}$ H approximated as a bound state of a deuteron and a Λ with an expected radius of ~ 10 fm [2]
- $^{3}_{\Lambda}$ H lifetime and B_{Λ} reflect its structure
- Weakly bound nature of ${}^{3}_{\Lambda}$ H is confirmed by the latest ALICE measurement in Pb—Pb collisions [3]
 - $\tau = [253 \pm 11 \text{ (stat.)} \pm 6 \text{ (syst.)}] \text{ ps}$
 - $B_{\Lambda} = [72 \pm 63 \text{ (stat.)} \pm 36 \text{ (syst.)}] \text{ keV}.$

• ${}^{3}_{\Lambda}$ H/ Λ ratio provides a powerful tool to investigate nuclear production mechanism

• Pb—Pb collisions:

- small difference between SHM and coalescence predictions
- pp and p—Pb collisions:
 - large separation between production models
 - good agreement with 2-body coalescence
 - tension with SHM at low charged-particle multiplicity density
 - configuration with V_c = 3dV/dy is excluded by more than 6σ

p—Pb: <u>PRL 128 (2022) 25, 252003</u> Pb—Pb: <u>PLB 754 (2016) 360-372</u>

- TUT
- Light-flavor particle production studied in all available collision systems and energies with ALICE
- Small collision systems (pp and p—Pb) are particularly interesting
 - test production models
- Large collision systems (Pb—Pb) are useful
 - investigate collective motion
- Production mechanism still not completely clear
 - stay tuned for new results with the upcoming LHC Run 3!

(Anti)(hyper)nuclei production in Pb-Pb collisions

• Blast-Wave fit of all light-flavor hadrons shows a common behavior for all particles, from π to α

Pb—Pb collisions

- Blast-Wave model describes the particle distribution at the kinetic freeze-out as a result of the expansion of a thermalized source
- The expanding source causes a mass dependent hardening
- The expansion velocity and decoupling temperature are free parameters of the model

- Initial space anisotropy in noncentral A-A collisions
 - azimuthal anisotropy of particle emission wrt symmetry plane

Particle azimuthal distribution can be espressed as a Fourier series

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n\geq 1} v_n \cos\left(n\left(\varphi - \Psi_n\right)\right)$$

 $\begin{cases} \Psi_n = n^{th} \text{ symmetry plane} \\ \varphi = \text{azimuthal angle} \\ v_n = \text{flow coefficients} \\ v_2: \text{ elliptic flow} \\ v_3: \text{ triangular flow} \end{cases}$

- Mass ordering at low p_{T} , increasing trend with p_{T} and centrality
 - Expectations from relativistic hydrodynamics are fulfilled

- Production in small collision systems can also be explored using the underlying event (UE) activity
- Coalescence mechanism can be tested comparing the deuteron production in jets, where nucleons are already closer in phase space, with that in the underlying event
- Highest p_T particle ($p_T^{\text{lead}} > 5 \text{ GeV}/c$) used as jet proxy
- 3 regions in the transverse plane wrt leading track:
 - Toward: |Δφ| < 60° (Jet + UE)</p>
 - Transverse: 60° < |Δφ| < 120° (UE)</p>
 - Away: |Δφ| > 120° (Recoil jet + UE)
 - → Jet = Toward Transverse

Martin et al., EPJC (2016) 76: 299

- Deuteron production from events with a jet: $p_{T}^{lead} > 5 \text{ GeV}/c$
- Jet: ~10% of total production

 \rightarrow The majority of deuterons is produced in the underlying event

- B_2 in-jet ~ 15 times larger than B_2 in UE
- Enhanced deuteron coalescence probability in jets is observed for the first time!
- Due to the reduced distance in phase space of hadrons in jets compared to those out of jets → favors coalescence

- proton-proton (p-p) correlation is well known
- p-p correlation function properly described by using:
 - Fermi-Dirac wave function
 - Coulomb interaction
 - strong interaction
- Source size can be extracted:
 - *r*_{p-p} ~ 1.18 fm
- If the interaction is well known, hadron-hadron correlation can be used to measure the radius of the emitting source

Motivation

Antinuclei production:

- pp, p–A and (few) A–A reactions between primary **cosmic rays** and the interstellar medium
- dark-matter annihilation processes

To determine exact primary and secondary fluxes \rightarrow precise knowledge of antinuclei production, propagation and annihilation is needed

Hadron-hadron correlation

ALICE is pioneering the study of strong interactions using femtoscopic correlations

Momentum correlations can be employed to explore two-particle dynamics

Correlation function depends on two ingredients:

- emission source function (pp collisions: $r_{eff} \sim 1$ fm, Gaussian profile [9])
- two-particle relative wave function (quantum statistics + Coulomb + strong interactions)

Measuring $C(k^*)$, fixing the source $S(r^*)$, study the interaction

CATS Framework: D. Mihaylov et al., Eur. Phys. J. C78 (2018) 394

- Hadrons emitted from a system in statistical and chemical equilibrium
- $dN/dy \propto \exp(-m/T_{chem})$

 \Rightarrow Nuclei (large m): large sensitivity to T_{chem}

- Light hadrons are produced during phase transition
- Typical binding energy of nuclei ~ few MeV ($E_B \sim 2$ MeV for d)

⇒ how can they survive the hadronic phase environment?

Andronic et al., Nature 561, 321–330 (2018)

Coalescence models

¹PRC 99 (2019) 024001

²PRL 123 (2019) 112002

- If (anti)nucleons are close in phase space (Δ*p* < *p*₀) and match the spin state, they can form a (anti)nucleus
- Coalescence parameter B_A is the key observable

$$B_A(p_T^p) = E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} \left/ \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^A \right|_{p_T^p = p_T^A/A}$$

- Experimental observable tightly connected to the coalescence probability Larger $B_A \Leftrightarrow$ Larger coalescence probability
- Coalescence probability depends on the system size

Large distance in space (Both momentum and space correlations matter)

chiara.pinto@tum.de