Grid Computing for LHC

Emrah Akkoyun TUBITAK-ULAKBIM

TR-Grid High Performance and Grid Computing Center

OUTLINE

- Who we are?
 - TR-Grid infrastructure
 - Leading Projects and HEP Studies
- Grid Computing
 - Introduction to Grid Computing Technology
 - The Architecture and Applications
- WLCG
 - Tiers of WLCG
- A brief introduction to interacting with grid middleware
 - Grid Job Management

Who we are?

- TUBITAK
 - The Scientific and Technological Research Council of Turkey (TUBITAK) established in 1963 is an autonomous institution and is governed by a scientific board
 - Nation-wide research is conducted in 15 different research institutes.
 - The national coordinating body of EU's Framework Program

Who we are?

- ULAKBIM
 - Turkish National Academic Network and Information Center is an institute of TUBITAK which is responsible for:
 - Managing national grid initiative and infrastructure (NGI)
 - Managing national academic network ULAKNET (NREN)
 - Acting as a (digital) library for academic publications

TR-Grid

- TR-Grid initiative was established in 2003 with a MoU between:
 - TUBITAK-ULAKBIM
 - Bogazici University
 - Bilkent University
 - İstanbul Technical University
- Then, it was extended with the participation of four universities
- SEEGRID, SEEGRID-II, SEE-GRID-SCI, EUMEDGRID, EUMEDGRID-Support, EGEE-II, EGEE-III and EGI are the international projects that TR-Grid have been involved
- Under the management of ULAKBIM, TR-Grid NGI has been coordinating national grid related activities for 7 years

EGI Certified Sites

	Number of Cores	Storage (Tbyte)	Memory per Cores (GB)	Interconnectivity
TR-01-ULAKBIM	5760	30	3	Infiniband (QDR)
TR-03-METU	312	250	1	Gigabit Ethernet
TR-04-ERCIYES	64	1	1	Gigabit Ethernet
TR-05-BOUN	64	1	1	Gigabit Ethernet
TR-09-ITU	64	1	1	Gigabit Ethernet
TR-10-ULAKBIM	384	740	3	Infiniband (QDR)
TOTAL	6648	1023		

TR-Grid HPC Resources

	Number of Cores	Storage (TByte)	Memory per Core (GB)	Interconnectivit y	Theoretical Computing Performance (Tflops)
TR-01-ULAKBIM	5760	30	3	Infiniband	13
METU - CENG	360	12	2	Infiniband	3,8
YDU – IBM	1280	20	2	Infiniband	12

• The national HPC users can also utilize other computing centers, which are mostly managed by technical staffs on the universities

TR-Grid Leading Projects

- CERN Experiment
 - Both atlas and cms are supported with two production T2 centers
 - 9800 CPU (HEP-Spec) and 900 TB is dedicated in this year
- Earth Sciences
- Seismology
 - Data repository for seismic waveform obtained by geographically distributed stations
 - \sim 7.6 M files, \sim 2 TB data
 - National data as well as other countries in SEE region as part of SEE-Grid-SCI project
- Meteorology
 - ~20 TB data for processing
- Network Flow on WAN
 - ~18 TB data for storing
- Individual users scientific data

HEP Studies

- TR-Grid has two T2 centers for supporting ATLAS and CMS experiment.
 - TR-10-ULAKBIM for atlas
 - TR-03-METU for cms

		2009			2010			2011	
Turkey, Turkish Tier-2 Federation	ATLAS	CMS	TOTAL	ATLAS	CMS	TOTAL	ATLAS	CMS	TOTAL
CPU (HEP-SPEC06)	2800	2600	5400	5100	4700	9800	5100	4700	9800
Disk (Tbytes)	340	210	550	550	350	900	550	350	900

Introduction to Grid Computing

- World wide web uses the internet to share information
- Grid computing uses the internet to share computer power
- The purpose:
 - Forming a global network of computers that can be operated as one vast computational resources by integrating existing computing centers over the world which help a specific group of researchers

HPC and Grid Computing Model

- In a standard HPC model;
 - There exists many supercomputing and national centers in 1990s
 - To utilize computing resources, it is required to have an account and connect to a front-end system
- In Grid model;
 - The centers are integrated
 - A researcher can use a number of computing centers by using a single sign-on

Grid Computing

• "The Computational Grid is analogous to Electricity (Power) Grid and the vision is to offer a dependable, consistent, pervasive, and inexpensive access to highend resources irrespective their location of physical existence and the location of access."

Global Resource Share

- Access to remote computing and storage resources, software and data
- Access and control of remote sensors, telescopes and other devices
- With the improvement on the network technology, a large amount of data can be sent to another computing center and analyzed

Real Time Monitoring - RTM

The Grid Architecture

- Network Layer
 - connects grid resources
- Resource Layer
 - computers, storage systems, sensors, telescopes
- Middleware Layer
 - Essential for WLCG to work
 - organizes and integrates the resource in grid to create a single and seamless computational grid
 - EMI
 - Globus Toolkit
- Application Layer
 - applications and development toolkits to support applications

High-Throughput Problems

- The large problem is divided into many independent tasks each of which is scheduled on different computer processors.
- It is possible to perform hundreds of tasks simultaneously
- Examples:
 - Large Hadron Collider: the analyses of thousands of particle collisions
 - WISDOM project: the analyses of thousands of molecules to discover a drug

Grid Applications

- High-Energy Physics: LHC, Tevatron, HERA
- Biology: Medical Images, Bioinformatics, Drug Discovery
- Earth Science: Hydrology, Pollution, Climate, Geophysics
- Astrophysics: Planck, MAGIC
- Fusion
- Computational Chemistry

Grid computing for LHC

- In the beginning, the required computing power available at CERN was not sufficient for LHC data analysis
- Most of the universities and institutes involved in the collaboration had national and regional computing centre
 - Raised Question: Could it possible to integrate these facilities to provide a single LHC computing service?
 - The remarkable improvement on the wide area network
 - increasing capacity and bandwith with falling costs

The growth on the grid computing

- Computing power doubles every 18 months
- Network performance is doubling every nine months
- Data storage density is doubling every 12 months
- RESULT:
 - Networks become faster and individual computers become powerful. As a result, grid concept becomes more feasible for solving increasingly complex problem.

Worldwide LHC Computing Grid (WLCG)

- a global collaboration linking to hundreds of data centers worldwide
- enables researchers to analyze 15 Petabytes of data annually generated by the LHC distributed stored over the world.
- a distributed computing infrastructure built by integrating thousands of computers and storage systems
- no matter where the resources are located
- more than 8000 physicists around the world can access and process the LHC data

WLCG - The World's Largest Computing Grid

- Based on two main global grids
 - EGI (European Grid Infrastructure) in Europe
 - OSG (Open Science Grid) in United States

- Tier-0
 - CERN Computer Centre to where all data from the LHC passes
 - Provides less than 20% of the total compute capacity
 - Responsibilities
 - safe-keeping of the raw data (first copy) and reconstruction
 - distribution of raw and reconstructed data over the Tier-1s

- Tier-1
 - Large computer centres with sufficient storage and computing capacity as well as high speed connectivity with other centres
 - There are 11 Tier-1 centres available.
 - Responsibilities:
 - storing proportional share of raw and reconstructed data
 - large scale reprocessing and storing generated output
 - distribution data to Tier-2 center and storing the simulation data generated by Tier-2 centres

• The list of Tier-1 centers over the world

Canada	<u>TRIUMF</u>			
Germany	<u>KIT</u>			
Spain	<u>Port d'Informació Científica (PIC)</u>			
France	<u>IN2P3</u>			
Italy	INFN			
Nordic countries	Nordic Datagrid Facility			
Netherlands	<u>NIKHEF</u> / <u>SARA</u>			
Таіреі	ASGC			
United Kingdom	<u>GridPP</u>			
USA	<u>Fermilab-CMS</u>			
USA	BNL ATLAS			

- Tier-2 centers
 - Typically universities and scientific institutes
 - 140 Tier-2 centers are currently available
 - Responsibilities:
 - Storing sufficient data and providing adequate computing power
 - Handling proportional share of simulated event production and reconstruction
- Tier-3 centers
 - Local small cluster at universities or an individual PC
 - No formal engagement between WLCG and Tier-3 resources

Interacting with Grid Middleware

- Installing a ssh client and having an account on UI
- Applying a grid certificate and generating private and public keys
- Being member of relevant virtual organization
- Creating a proxy
- Managing your jobs and data

Generating individual keys

feyza@lufer:~\$ cp feyzaeryol.pl2 .globus fevza@lufer:~\$ cd .globus feyza@lufer:~/.globus\$ openssl pkcsl2 -clcerts -in feyzaeryol.pl2 -out usercert.pem Enter Import Password: MAC verified OK Enter PEM pass phrase: Verifying - Enter PEM pass phrase: feyza@lufer:~/.globus\$ openssl pkcsl2 -nocerts -in feyzaeryol.pl2 -out userkey.pem Enter Import Password: MAC verified OK Enter PEM pass phrase: Verifying - Enter PEM pass phrase: fevza@lufer:~/.globus\$ ls -lrt total 12 -rw-r--r-- 1 fevza troridb 3938 Apr 29 23:24 fevzaervol.pl2 -rw-r--r-- 1 feyza trgridb 3574 Apr 29 23:25 usercert.pem -rw-r--r-- 1 feyza trgridb 1900 Apr 29 23:25 userkey.pem feyza@lufer:~/.globus\$ chmod 644 usercert.pem feyza@lufer:~/.globus\$ chmod 600 userkey.pem

Checking the certificate

```
egitiml@lufer:~$ grid-cert-info
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 3132 (Oxc3c)
        Signature Algorithm: shalWithRSAEncryption
        Issuer: C=GR, O=HellasGrid Demos, OU=Certification Authoritites, CN=HellasGrid Demo CA 2006
        Validity
           Not Before: Apr 13 07:35:02 2009 GMT
           Not After : Apr 28 07:35:02 2009 GMT
        Subject: C=GR, O=HellasGrid Demos, OU=People, L=Turkey - Grid User Training for Local Commun
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
           RSA Public Key: (1024 bit)
                Modulus (1024 bit):
                    00:ce:8b:60:8c:6d:22:7c:cf:4d:73:e8:4c:9f:a6:
                    02:6d:11:8f:3e:83:e0:f2:32:f2:3c:09:cc:20:3a:
```

Creating a proxy

- To be authorized to utilize the resources for 12 hours, it requires to create a proxy
 - \$ voms-proxy-init –voms sgdemo
- To obtain information about the generated proxy
 - \$ voms-proxy-info --all
- It is possible to extend the validation time of created proxy by using myproxy

```
egitiml@lufer:~$ voms-proxy-init --voms sgdemo
Cannot find file or dir: /home_palamut2/egitim/egitiml/.glite/vomses
Enter GRID pass phrase:
Your identity: /C=GR/O=HellasGrid Demos/OU=People/L=Turkey - Grid User Training for I
Creating temporary proxy ...... Done
Contacting voms.irb.hr:15012 [/C=HR/O=edu/OU=irb/CN=host/voms.irb.hr] "sgdemo" Done
Creating proxy ..... Done
Your proxy is valid until Sat Apr 18 10:45:49 2009
egitiml@lufer:~$
```

Questions should be answered before submission of jobs

- The following points should be decided
 - Which executable, codes will be submitted?
 - Which data will be used?
 - The amount of data will be sent
 - Whether the executables are depend on the Operating System or Library

Job Description Language (JDL)

- JobType Normal (simple, sequential job), Interactive, MPICH, Checkpointable
- Executable The command will be executed
- Arguments The arguments passing to command
- StdInput, StdOutput, StdError The input, output and error files
- Environment Environment variables
- InputSandbox The input files that application needs
- OutputSandbox The output files after job completion
- Requirements Application specific requirements

An example of JDL

```
Executable = "/bin/sh";
```

```
Arguments = "HelloWorld.sh";
```

```
Stdoutput = "stdoutput.txt";
```

```
StdError = "stderror.txt";
```

InputSandbox = {"HelloWorld.c", "HelloWorld.sh"};

OutputSandbox = {"stdoutput.txt","stderror.txt"};

Requirements = (other.GlueHostOperatingSystemName == "linux");

```
Rank = other.GlueCEStateFreeCPUs;
```

Listing the appropriate sites

- With the JDL, a user defines the needs of the jobs. The list of sites which satisfy the needs of the application can be found as follow:
 - \$glite-wms-job-list-match –a <job.jdl>
- A user can specify a single site where the jobs will be submitted
 - Requirements = other.GlueCEUniqueID == "ce.ulakbim.gov.tr:2119/jobmanager-lcgpbs-sgdemo"

Listing the appropriate sites

egitiml@lufer:~/is-gonderme/examplel\$ glite-wms-job-list-match -a HelloWorld.jdl

Connecting to the service https://wms.ulakbim.gov.tr:7443/glite_wms_wmproxy_server

COMPUTING ELEMENT IDS LIST

The following CE(s) matching your job requirements have been found:

CEId

- ce.iiap-cluster.sci.am:2119/jobmanager-pbs-sgdemo
- ce.iiap-cluster.sci.am:2119/jobmanager-pbs-sgdemo
- ce.seegrid.hpcc.sztaki.hu:2119/jobmanager-lcgpbs-sgdemo
- ce.ulakbim.gov.tr:2119/jobmanager-lcgpbs-sgdemo
- ceOl.grid.renam.md:2119/jobmanager-lcgpbs-sgdemo

Grid Job management

- To submit a job to grid:
 - glite-wms-job-submit –a [--vo <VO>] [-o <file_name>] <job.jdl>
 - where --vo indicates the virtual organization and -o indicates the file where the job ID will be stored
- To monitor the status of the submitted job:
 - glite-wms-job-status [—i <dosya_ismi>] [job ID]
 - where -i indicates the name of the input file where the job ID is stored
- To get the output of the jobs
 - glite-wms-job-output [—i <dosya_ismi>] [job ID]
- To cancel a submitted job
 - glite-wms-job-cancel <i§Numarası>

Job Submission

egitiml@lufer:~/is-gonderme/examplel\$ glite-wms-job-submit -a -o examplel HelloWorld.jdl

Connecting to the service https://wms.ulakbim.gov.tr:7443/glite_wms_wmproxy_server

The job has been successfully submitted to the WMProxy Your job identifier is:

https://wms.ulakbim.gov.tr:9000/3QIRrHwp6IM6gosSNUnRAQ

The job identifier has been saved in the following file: /home_palamut2/egitim/egitiml/is-gonderme/examplel/examplel

egitiml@lufer:~/is-gonderme/examplel\$

Monitoring Job

egitiml@lufer:~/is-gonderme/examplel\$ glite-wms-job-status -i examplel

1 : https://wms.ulakbim.gov.tr:9000/rNMyBlsyFnA5F68cAuCi_w

2 : https://wms.ulakbim.gov.tr:9000/3QIRrHwp6IM6gosSNUnRAQ

- a : all
- q : quit

Choose one or more jobId(s) in the list - [1-2]all:2

Status info for the Job : https://wms.ulakbim.gov.tr:9000/3QIRrHwp6IM6gosSNUnRAQ Current Status: Done (Success) Logged Reason(s):

- Job got an error while in the CondorG queue.
- Job terminated successfully

Exit code:	0
Status Reason:	Job terminated successfully
Destination:	node001.grid.auth.gr:2119/jobmanager-pbs-sgdemo
Submitted:	Fri Apr 17 22:54:19 2009 EEST
*****************	************

egitiml@lufer:~/is-gonderme/examplel\$

Getting Job Results

egitiml@lufer:~/is-gonderme/examplel\$ glite-wms-job-output -i examplel

1 : https://wms.ulakbim.gov.tr:9000/rNMyBlsyFnA5F68cAuCi w

2 : https://wms.ulakbim.gov.tr:9000/3QIRrHwp6IM6gosSNUnRAQ

- a : all
- q : quit

Choose one or more jobId(s) in the list - [1-2]all (use , as separator or - for a)

Connecting to the service https://wms.ulakbim.gov.tr:7443/glite_wms_wmproxy_server

JOB GET OUTPUT OUTCOME

Output sandbox files for the job: https://wms.ulakbim.gov.tr:9000/3QIRrHwp6IM6gosSNUnRAQ have been successfully retrieved and stored in the directory: /tmp/jobOutput/egitiml 3QIRrHwp6IM6gosSNUnRAQ

```
egitiml@lufer:~/is-gonderme/examplel% 1s -1rt /tmp/jobOutput/egitiml_3QIRrHwp6IM6gosSNUnRAQ
total 4
-rw-r--r-- 1 egitiml seismo 12 Apr 17 23:00 message.txt
-rw-r--r-- 1 egitiml seismo 0 Apr 17 23:00 stderror
egitiml@lufer:~/is-gonderme/examplel%
```

QUESTIONS ?

More Information

- GridCafe, <u>http://www.gridcafe.org/</u>
- WLCG Public Website, <u>http://lcg.web.cern.ch/lcg/public/default.htm</u>
- TR-Grid, <u>www.grid.org.tr</u>