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Statistical analysis in particle physics

Observe events of a certain typeObserve events of a certain type

Measure characteristics of each event 
particle momenta, number of muons, energy of jets,...

Theories (e.g. SM) predict distributions of these properties up to free 
parameters, e.g., α, GF, MZ, αs, mH, ...

Some tasks of data analysis:
Estimate (measure) the parameters;
Quantify the uncertainty of the parameter estimates;
Test the extent to which the predictions of a theory are in agreement with the data.
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What is Probability

S={E1, E2,…}  set of possible results (events) of an experiment.
E.g. experiment: Throwing a dice. 
E1=“throw 1”, E2=“throw a 2”, E3=“throw an odd number”, E4=“throw a number>3”,…1 , 2 , 3 , 4 ,

Ex and Ey are mutually exclusive if they can’t occur at the same time. 
E1 and E2 are mutually exclusive, E3 and E4 are not1 2 3 4

Mathematical probability: For each event E exists a P(E) with:

l illllihh1)(III
exclusivemutually  are  and  if )()()or  (  :II

0)(   :I

212121 +=
≥

∑ EP
EEEPEPEEP

EP

eventsexclusivemutually allover issum the  where,1)( :III =∑ iEP A.N. Kolmogorov
(1903‐1987)

From these axioms we can derive further rules
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Further properties, conditional probability
W d i f th ti )(1)( APAPWe can derive further properties

)()(thenif
0)(

1)(
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−=

)()()()(
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<⊂

)( BAP ∩

B

Conditional probability of A given B

E.g. you are guessing the weekday of birth of a friend: P(Sunday) = 1/7. 
After the hind it was on a weekday: P(Tuesday|weekday) = 1/5

)(
)()|(

BP
BAPBAP ∩

=
A

B∩AAfter the hind it was on a weekday: P(Tuesday|weekday) = 1/5  
[ P(Tuesday and weekday) = 1/7, P(weekday) = 5/7]

Independent events A and B )()()()()|( APBPAPBAPBAP ==
∩

=p
If your friend hints it was a rainy day: 
P(Tuesday|rainday) = 1/7

)(
)()(

)|(
BPBP

Axioms can be used to build a complicated theory, but the numbers so far are 
entirely free of meaning. Different interpretations of probability
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Probability as frequency limit

Perform an repeatable experiment N times with outcomes
X1,X2,… (the ensemble). Count the number of times that X
occurs: NX. Fraction NX /N tends toward a limit, defined as 

the probability of outcome X: Richard von Mises
(1883‐1953)N

NXP X

N ∞→
= lim)(

Useful in daily life? 
The N outcomes of the experiment are the 
ensemble. P(E) depends on the experiment 
and one the ensemble !

German insurance company X finds 
that 1.1% of their male clients dies 
between 40 and 41. Does that mean 
that the probability that Hr. Schmitt, and one the ensemble !

The biggest problem when doing demographical 
studies (shopping behavior, advertisements) is 
to find the representative ensemble!

Experiment must be repeatable.

he has a police with X, dies between 
40 and 41 is 1.1%?  What if the data 
were collected from a sample of 
German smoking hang‐glider pilots? 
Likely you would have gotten aExperiment must be repeatable.

Common approach in HEP: 
Physical laws are universal and unchanging. Different collider experiments all draw 
f th bl f ti l i t ti t dl i th

Likely you would have gotten a 
different fraction.

from the same ensemble of particle interactions repeatedly in the same way.
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Objective probability – propensity

Examples: throwing a coin, rolling a die, or drawing colored pearls out 
of a bag, playing roulette.

Probability of a certain event as an intrinsic property of the experiment.
E=“Draw a red and then a blue pearl when there are 3 red, 5 blue, and 2 black in the 
bag”. P(E) can be calculated without actually performing the experiment.

Does not depend on any collection of events, it is a single-case 
probability, often called chance or propensity.

Propensities can not be empirically asserted
If the experiment is being performed, the propensities give rise to frequencies of 
events. This could be defining the propensity (K.Popper), however problems with the 
t bilit f th f i istability of these frequencies arise.

Hence propensities now often defined by the theoretical role they play 
in science, e.g. based on an underlying physical law.in science, e.g. based on an underlying physical law.
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Bayes Theorem

From conditional probability 

)()|()()()|( APABPBAPBPBAP =∩=

follows Bayes’ theorem

)(
)()|()|(

BP
APABPBAP =

Uncontroversial consequence of Kolmogorov’s axioms!

)(

Reverend Thomas Bayes 
(1702−1761)
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Subjective probability

A,B, … are hypothesis (statements that are either true or false). Define 
the probability of hypothesis A:

(Considered “unscientific” in the frequency definition)

 trueis that beliefofdegree )( AAP =

Applied to Bayes’ theorem: Prediction
Probability of a result B 
assuming hypothesis A is true

P t i b bilit

(= likelihood function, back later)

)(
)()|()|(

BP
APABPBAP =

Posterior probability
Probability of 
hypothesis A after 
seeing the result B

Initial degree of belief (prior probability)
Probability of hypothesis A, before seeing 
the result.

Normalization: total probability of seeing result B. 
Involves sum over all possible hypothesis

Æ this is the subjective part

Experimental evidence or lack thereof modifies initial degree of belief, 
depending on agreement with prediction. 99



Interpretation of Bayes theorem

)theory(
)result(

)theory|result()result|theory( P
P

PP =

If a result R forbidden by theory T, P(R|T) = 0, then the probability that 
the theory is correct when the result is observed is 0: P(T|R)=0
⇒ An observation of R would disprove T.

If theory T says R is unlikely, P(R|T) = , then the theory T is unlikely 
under observation of R: P(T|R)=
⇒ An observations of R would lower our belief in T.

If theory T predicts R to have a high probability, P(R|T) = , then the 
theory T is likely under observation of R: P(T|R)=
⇒ An observations of R would strengthen our belief in T.
If the denominator P(R) is large, ie there are many reasons for R to happen, 
observation of R is not a strong support of T!observation of R is not a strong support of T! 

o The problem with the background
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BLaw of total probability

S
Sample space S with subset B

Disjoint subsets A of S: SAU Ai

B∩Ai

Disjoint subsets Ai of S:

B is made up of 
di j i t B A

i iABB ∩=U

SAii =U

B∩Aidisjoint B∩Ai: )()|()( iii APABPABP =∩

Law of total probability ∑∑ =∩=
i iii i APABPABPBP )()|()()(

B ’ th b
APABPBAP )()|()|(Bayes’ theorem becomes  

1111

∑
=

i ii APABP
BAP

)()|(
)()|()|(



Example of Bayes’ theorem

Meson beam
Consists of 90% pions, 10% kaons

Cherenkov counter to give signal on pions i l
K
π

2

1

=
==

B
A

AA

Cherenkov counter to give signal on pions
95% efficient for pions, 6% fake rate (accidental signal) for kaons

Q1: if we see a signal in the counter, how likely did it come from a pion?

signal=B

Q1: if we see a signal in the counter, how likely did it come from a pion?

)π(
)K()Ksignal()π()πsignal(

)πsignal(
)signalπ(

+
= p

pppp
p

p

%3.9990.0
10.006.090.095.0

95.0
)()g()()g(

=×
×+×

=

pppp

⇒ 0.7% chance that the signal came from a kaon.

Q2: if there is no signal, how likely was that a kaon?

1212
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Which probability to use?

Frequency, objective, subjective – each has its strong points and 
shortcomings. 

All consistent with Kolmogorov axioms.g

In particle physics frequency approach most often useful.
For instance when deriving results from analyzing many events from a datasetFor instance when deriving results from analyzing many events from a dataset.

Subjective probability can provide you with a more natural way of 
thinking about and treating non repeatable phenomenathinking about and treating non-repeatable phenomena.

Treatment of systematic uncertainties, probability that you discovered SUSY or the 
Higgs in your analysis, probability that parity is violated given a certain measurement, 
…

Be aware that the naming conventions are not always clear (im
particular ‘objective’ and ‘subjective’), best bet is to use “Frequentist” 
and “Bayesian”.
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Describing data

Higgs event in an LHC proton–proton collisionHiggs event in an LHC proton proton collision 
at high luminosity 
(together with ~24 other inelastic events)

Tracks in a bubble chamber at CERN as 
hit by a pion beam

HEP: “events” of particle interactions, measured by complex detectors

Measurements of “random” variables, distribution governed by underlying 
physics processesphysics processes

Energy, momentum, angle, number of hits, charge, time(delta)
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Data sample properties
Data sample (single variable)                            , can be presented

0: 0.998933
1 0 434764

7: -0.0747045
8 0 00791221

14: -1.06067
15 1 3883

},...,,{ 21 Nxxxx =

un-binned                                                         or binned
1: -0.434764
2: 0.781796
3: -0.0300528
4: 0.824264
5: -0.0567173
6: -0.900876

8: 0.00791221
9: -0.410763
10: 1.39119
11: -0.985066
12: -0.0489405
13: -1.44334

15: -1.3883
16: 0.767397
17: -0.73603
18: 0.579721
19: -0.382134

Arithmetic mean:                              or ∑=
N

ix
N

x 1 ∑=
bN

jj xn
N

x 1
Center of Kleinmai‐
scheid /Germany

Variance:

∑
=i

iN 1
∑
=j

jjN 1

222)(1)( xxxxxV
N

i −=−= ∑ also center ofVariance: 

St d d d i ti

1

)()( xxxx
N

xV
i

i∑
=

22)(V

also center of 
Europe (2005)

Standard deviation: 
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More than one variable

Set of data of two variables )},(),...,,(),,{( 2211 NN yxyxyxx =

0: (-1.34361,0.93106)
1: (0.370898,-0.337328)

7: (0.517314,-0.512618)
8: (0.990128,-0.597206)

14: (0.901526,-0.397986)
15: (0.761904,-0.462093)

2: (0.215065,0.437488)
3: (0.869935,-0.469104)
4: (0.452493,-0.687919)
5: (0.484871,-0.51858)
6: (0.650495,-0.608453)

9: (0.404006,-0.511216)
10: (0.789204,-0.657488)
11: (0.359607,-0.979264)
12: (-0.00844855,-0.0874483)
13: (0.264035,-0.559026)

16: (-2.17269,2.31899)
17: (-0.653227,0.829676)
18: (-0.543407,0.560198)
19: (-0.701186,1.03088)

There is more information than mean and variance of x and of y !

Covariance: yyxxyx
N

ii −−= ∑ ))((1),cov(

Correlation:

yxxy

yy
N

y
i

ii

−=

∑
=1

))((),(

yx )cov(
ρ=0 ρ=0.5

Correlation:
between -1 and 1 
without dimensions

yx

yx
σσ

ρ ),cov(
=

Example: group of adults
ρ(height, weight)>0, ρ(weight, stamina)<0, ρ(height, IQ)=0, but ρ(weight, IQ)<0 1616

ρ=0.9 ρ=‐0.9



Probability density function

Suppose outcome of experiment is value vx for continuous variable x

dxxfdxxxvAP x )(]),[in found :( =+

defines the probability density function (PDF): 

fx )(]),[(

)(xf

Di i

1)( =∫
∞

∞−
dxxf xmust be somewhere (axiom III)

Dimensions:
• P(A) is dimensionless (between 0 and 1)
• f(x) has the dimensionality of (1 / dimension of x)

For discrete x, with possible outcomes x1, x2, …:

∑probability mass function:
1717
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Properties of pdf’s

Suppose distribution of variable x follows pdf f(x). 

Average x the “expectation value”: dxxxfxxE ∫
∞

=== )()( μAverage x – the expectation value”:

and the variance:  

dxxxfxxE ∫ ∞−
=== )()( μ

22)( xxxV −=

Can also be defined for functions of x, e.g. h(x): dxxfxhh ∫
∞

∞−
= )()(

•

• unless g and h are independent
hghg +=+

hggh ≠

Note:                 are averages over pdf’s,         are averages over the 
real data sample

hx,hx ,
real data sample

Law of large numbers ensures that

1818
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Cumulative distribution function

Probability to have outcome less than or equal to x is

)()( xFxdxf
x

≡′′∫
Monotonously rising function with F(-∞)=0 and F(∞)=1.

)()( xFxdxf ≡∫ ∞−

Alt ti l d fi df ithAlternatively define pdf with
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Drawing pdf from data sample

1. Histogram with B bins of width Δx
2. Fill with N outcomes of experiment 

x x ⇒ H=[n n ]x1,…,xN ⇒ H=[n1,…,nB]

3. Normalize integral to unit area

1~~
1

=⇒= ∑ =

B

i iii nNnn

],[in  found  offraction ~ xxxxn iii Δ+=

PDF

infinite data sample, frequentist approach
zero bin width, step function becomes continuous0→Δ

∞→
x

N
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Multidimensional pdf’s

Outcome of experiment (event) characterized by n variables

),,,( 21 nxxxx K
r
=

Probability described in 
n dimensions by joint pdf : ),,,()( )()2()1( nxxxfxf K

r
=

)()2()1()()2()1(

)(

1

)(

)()(

nn

i
n

i

dddf

xdxfAP rr
I =
=

where 

)()2()1()()2()1( ),,,( nn dxdxdxxxxf LK=

)(i

)()()(

)(

 and  intervalin  is        
eventofable that varihypothesis :

iii

i

dxxx
iA
+

Normalization: 
2121

1),,,( )()2()1()()2()1( =∫ ∫ nn dxdxdxxxxf LKL



Marginal pdf’s, independent variables

PDF of one (or some) of the variables, integration of all others
⇒ marginal PDF:

∫
Marginal PDFs are projections of joint PDFs on individual axis
Note that

∫ +−= )()1()1()2()1()()2()1()( ),,,()( njjnj
X

dxdxdxdxdxxxxfxf j LLK

1)( )()( =∫ ii dxxf iNote that 1)(∫ X
dxxf i

Variables                           are independent from each other if-and-only-
if they factorize:

∏ i)(

)()2()1( ,,, nxxx K

2222
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i
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Conditional pdf’s

Sometimes we want to consider some variables of joint pdf as constant. 
Let’s look at two dimensions, start from conditional probability:

dxdyyxfBAP )()( ∩

Conditional pdf, distribution of y for fix x=x1:

dyxyh
dxxf
dxdyyxf

AP
BAPABP

x

)|(
)(
),(

)(
)()|( ≡=

∩
=

)(
),()|( 1

1 xxf
yxxfxxyh

=
=

==
1 )( 1xxfx =

• In joint pdf treat some variables as constant and evaluate at fix point (e.g. x=x1)
• Divide the joint pdf by the marginal pdf of those variables being held constant 

evaluated at fix point (e g f (x=x1))evaluated at fix point (e.g. fx(x=x1))
• h(y|x1) is a slice of f(x,y) at x=x1 and has correct normalization

2323
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Some Distributions in HEP

Binomial Branching ratio
Multinomial Histogram with fixed N
Poisson N mber of e ents fo nd in data samplePoisson Number of events found in data sample
Uniform Monte Carlo method
Exponential Decay time
Gaussian Measurement error
Chi-square Goodness-of-fit
Cauchy  (Breit-Wigner) Mass of resonancey ( g )
Landau Ionization energy loss

Other functions to describe special processes:Other functions to describe special processes: 
Crystal Ball function, Novosibirsk function, …
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Binomial distribution
Outcome of experiment is 0 or 1 with p=P(1) (Bernoulli 
trials). r : number of 1’s occurring in n independent 
trials.

Probability mass 
function: )!(!

!)1(),;(
rnr

nppnprP rnr

−
−= −

r times “1”, combinatoric

Properties:
n‐r times “0” term

)1()( 2 −==

=

pnprV

npr

σ

Expectation: A coin with p(“head”)=0.45 you expect to land on 
its head np=45 out of n=100 times.

Example: spark chamber 95% efficient to detect the passing of a charged particle. How efficient 
is a stack of four spark chambers if you require at least three hits to reconstruct a track?

2525

%6.98815.0171.0195.0405.095.0)4,95.0;4()4,95.0;3( 43 =+=×+××=+ PP
is a stack of four spark chambers if you require at least three hits to reconstruct a track?



Poisson distribution (law of small numbers)

Discrete like binomial distribution, but no notion of trials. Rather λ, the mean 
number of (rare) events occurring in a continuum of fixed size, is known.
Derivation from binomial distribution: 

• Divide the continuum into n intervals, in each interval assume p=“probability that event occurs in 
interval”. Note that λ=np is the known and constant.

• Binomial distribution in the limit of large n (and small p) for fixed r

)1(!)1()( nnP
r

nrrnr λ−

Probability mass function:
!

);(
r
erP

r λλλ
−

=

!
)1(

)!(!
)1(),;(

r
np

rnr
ppnprP nrrnr λ−→

−
−=

Properties:

!r

λσ

λ

==

=
2)(rV

r

Famous example: Ladislaus Bortkiewicz (1868-1931). The number of 
soldiers killed by horse-kicks each year in each corps in the Prussian 
cavalry: 122 fatalities in 10 corps over 20 years. λ=122/200=0.61 deaths 

Deaths Prediction Cases

0 108.7 109

1 66.3 65

2626
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on average per year and corp.  

Probability of no deaths in a corp in a year: 5434.0)61.0;0( =P
2 20.2 22

3 4.1 3
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Gaussian (normal) distribution
1

Properties: μx

22 2)(

2
1),;( σμ

σπ
σμ −−= xexf

Properties:
2)( σ

μ

=

=

xV

x

Note that μ and σ also denote mean and standard deviation for any distribution, not just 
the Gaussian. The fact that they appear as parameters in the pdf justifies their naming.

Standard Gaussian 221)( xex −=ϕStandard Gaussian
transform xÆx’=(x-μ)/σ

C m lati e distrib tion can not be calc lated

2
)( ex =

π
ϕ

∫ ′′
x

d)()Φ( ϕCumulative distribution                                  can not be calculated 
analytically. 

Tables provide:

∫ ∞−
= xdxx )()Φ( ϕ

%73.99)3Φ(%,45.95)2Φ(%,27.68)1Φ( ===

Central role in the treatment of errors: central limit theorem
2727



G i i d bi i l b f th t d

Other distributions
Gaussian, poisson, and binomial are by far the most common and 
useful. For the description of physical processes you encounter

E ti l
/1 0

)(
ξ

ξ
ξ

ξ =
⎨
⎧ ≥− xxe

f
x

Exponential

Decay of an unstable particle with mean life-time ξ .

2)(
,

00
);(

ξ
ξ

ξ ξ

=⎩
⎨

<
=

xVx
xf

Uniform
12/)()(

2/)(
,

otherwise0
),;( 2

1

αβ
βαβα

βα αβ

−=
+=

⎩
⎨
⎧ ≤≤

= −

xV
xx

xf

Breit-Wigner
∞→−+Γ

Γ
=Γ

)(
defined not well

,
)()2(

21),;( 2
0

20 xV
x

xx
xxf

π
Mass of resonance, e.g. K*, φ, ρ. Full width at half maximum, Γ, is 
the decay rate, or the inverse of the lifetime.

Chi-square
V

nx
exnxf xn

n 2)(
,

)2(2
1);( 212

2

=
Γ

= −−q

Goodness-of-fit test variable with method of least squares follows this. 
Number of degrees of freedom n. 2828
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Central limit theorem

A variableY that is produced by the cumulative effect of many 

independent variables Xi,                , with mean μi and variance σi
2 will ∑=

N

iXY
be approximately Gaussian.

Expectation value

=i 1

∑∑ ==
N

i

N

iXY μpec a o a ue

Variance

∑∑
== i

i
i

i
11
μ

( ) ( ) ∑∑ ==
N

i

N

iXVYV 2σ

Becomes Gaussian as 

( ) ( ) ∑∑
== i

i
i

i
11

∞→N

Examples
• E.g. human height is Gaussian, since it is sum of many genetic factors.

W i h i G i i i i d i d b h i l f f d• Weight is not Gaussian, since it is dominated by the single factor food.
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Half-time summary 
P t IPart I
Introduced probability

Frequency, subjective. Bayes theorem.

Properties of data samples
Mean, variance, correlation

Probability densities – underlying distribution from which data samples 
dare drawn

Properties, multidimensional, marginal, conditional pdfs
Examples of pdfs in physics, CLT

Part II
HEP experiment: repeatedly drawing random events from underlying 
distribution (the laws of physics that we want to understand). From the 
drawn sample we want to estimate parameters of those laws

Purification of data sample: statistical testing of events
E ti ti f t i lik lih d d hi fitEstimation of parameters: maximum likelihood and chi-square fits
Error propagation

3030



Intermezzo: Monte Carlo simulation

Looking at data, we want to infer something about the (probabilistic) 
processes that produced the data.

Preparation:
• tuning signal / background separation to achieve most significant signal
• check quality of estimators (later) to find possible biases

t t t ti ti l th d f tti th fi l lt• test statistical methods for getting the final result
all of this requires data based on distribution with known parameters

Tool: Monte Carlo simulation

B d f d b i l i l lli iBased on sequences of random numbers simulate particle collisions, 
decays, detector response, …

Generate random numbers
Transform according to desired (known) PDFTransform according to desired (known) PDF
Extract properties
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Random numbers

Sequence of random numbers uniformly distributed between 0 and 1
True random numbers in computers use special sources of entropy: thermal noise 
sources, sound card noise, hard-drive IO times, …

Si l ti h t diff t t f t ’t l thSimulation has to run on many different types of computers, can’t rely on these
Most random numbers in computers are pseudo-random: algorithmically determined 
sequences

Many different methods, e.g. 4 in root
TRandom

Same as BSD rand() function. Internal state 32bit, short period ~109. 
TRandom1

31
1 2 and ,12345,1103515245 with mod)( ===+=+ mcamcaxx nn

TRandom1
Based on mathematically proven Ranlux. Internal state 24 x 32bit, period ~10171. 4 
luxury levels. Slow. Ranlux is default in ATLAS simulation.

TRandom2
Based on ma imall eq i distrib ted combined Ta s orthe generator Internal stateBased on maximally equi-distributed combined Tausworthe generator. Internal state 
3 x 32bit, period ~1026. Fast. Use if small number of random numbers needed.

TRandom3
Based on Mersenne and Twister algorithm. Large state 624 x 32bit. Very long period 

106000 Fast Default in ROOT~106000. Fast. Default in ROOT.
Seed: Seed 0 uses random seed, anything else gives you reproducible sequence.
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Transformation method – analytic

Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn that follow  f (x) by 
finding a suitable transformation  x (r).

))(()( PP ′≤′≤Require ))(()( rxxPrrP ′≤=′≤

)(rxr

∫∫
′′

this means ))(()()(
)(

rxFxdxfrdrru
rxr

′=′′=′= ∫∫ ∞−∞−

F ′)( )( ′so set                    and solve for           .

3333
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Example
1

Exponential pdf: 0    with ,1);( ≥= − xexf x ξ

ξ
ξ

x

∫
1

So set                                                  and solve for rxdexF
x x =′= ∫ ′−

0

1)( ξ

ξ
)(rx

This gives the transformation )1ln()( rrx −−= ξ
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Accept – reject method

Enclose the pdf in a box 
[ xmin , xmax ] x [ 0 , fmax ]

Procedure to select x according to f(x)

1) Generate two random numbers
1) x, uniform in [xmin, xmax]

if i [0 f ]2) u, uniform in [0, fmax]

1) If u<f(x), then accept x

“If dot below curve, use x value in histogram”
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Improving accept – reject method

In regions where f(x) is small compared to fmax a lot of the sampled 
points are rejected. 

Serious waste of computing power, simulation in HEP consists of billions of random p g p ,
numbers, so this does add up!

WASTE

Split [xmin, xmax] in regions (i), each with its own   , and simulate pdf
t l P li ti )()()()()( )( iiiii fAN

)(
max

if
separately. Proper normalization 

More general: find enveloping function around f(x), for which you can 

)(
max

)(
min

)(
max

)()( )( iiiii fxxAN ×−=∝

generate random numbers. Use this to generate x.
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MC simulation in HEP
Event generation: PYTHIA, Herwig, ISAJET,…

general purpose generators

for a large variety of reactions:for a large variety of reactions: 
e+e- → μ+μ-, τ+,τ-, hadrons, ISR, ...
pp → hadrons, Higgs, SUSY,...
Processes: hard production, resonance decays, parton
showers hadronization normal decaysshowers, hadronization, normal decays, …

Get a long list of colliding particles:
intermediated resonances, short lived particles, long lived 
particles and their momentum energy lifetimes Data reconstruction:particles and their momentum, energy, lifetimes

Detector response: GEANT
multiple Coulomb scattering (scattering angle)
particle decays (lifetime)

Same as for real data but keep 
truth information
Clustering, tracking, jet-finding

E ti t ffi i iparticle decays (lifetime)
ionization energy loss (ΔE)
electromagnetic, hadronic showers
production of signals, electronics response, ...

Get simulated raw data

Estimate efficiencies
# found / # generated
= detector acceptance x 

reconstruction efficiencies x 
event selectionGet simulated raw data

3737
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Nature, DataProbability

Theory simulated or real
Given these 

distributions, how will 
the data look like ?

l
Nature,
Theory

Data
simulated or real

Statistical
inference

Given these data, what canGiven these data, what can 
we say about the correctness, 

paramters, etc. of the 
distribution functions ?
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Typical HEP analysis

Signal ~10 orders below total cross-section

1. Improve significance: Discriminate signal 
f b k d M lti i t l ifrom background. Multivariate analysis, 
using all available information.

Event(W/SUSY), cone(τ,jet), object level (PID)

2 Parameter estimation2. Parameter estimation
Mass, CP, size of signal
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Event Classification

Suppose data sample with two types of events: Signal S, Background B
Suppose we have found discriminating input variables x1, x2, …  
What decision boundary should we use to select signal events (type S)?

Linear boundary?  A nonlinear one?Rectangular cuts?

B
x2 B

x2B
x2 B BB

S

x

S

x

S

x

How can we decide this in an optimal way?How can we decide this in an optimal way?

x1 x1x1

Multivariate event classification. Æ Machine learning
4040



Multivariate classifiers
Input: Classifier: Output:p

n variables as event 
measurement described by 
n‐dimensional joint pdf, one 
for each event type: f(x|S)

Maps n‐dimensional input space 
to one‐

dimensional output                . 

nnxxxx ℜ∈= ),,,( 21 K
r

ℜ∈)(xy r

Distributions have 
maximum S/B
separation.

yp f( | )
and f(x|B)

ℜ→ℜn

Classifier output distribution

reject S accept S

ℜn

ℜ→ℜny : reject S accept S

g(y|S)g(y|B)

ℜn

y(x)

y

Decision boundary can now be defined by single cut on 
the classifier output                        , which divides the 
input space into the rejection (critical) and acceptance

ycut

)(cut xyy r
=

4141

input space into the rejection (critical) and acceptance 
region. This defines a test, if event falls into critical 
region we reject S hypothesis.



Convention

In literature one often sees 

Null hypothesis H the presumed “default stage”• Null-hypothesis H0, the presumed default stage
• Alternative hypothesis H1

In HEP we usually talk about signal and background and it is common 
to assign

Background B = H0

Signal S = H1

4242



Definition of a test

Goal is to make some statement based on the observed data
x as to the validity of the possible hypotheses, e.g. signal hypothesis S.

A test of H0=B is defined by specifying a critical region WS (the signal region) of 
the data space such that there is an (only small) probability, α, for an event x of 
type H0=B, to be observed in there, i.e.,

Events that are in critical region WS: reject hypothesis H0 = accept as signal.
i ll d th i i ifi l l f th t t N t th t ll l th

α≤∈ )|( 0HWxP S
r

α is called the size or significance level of the test. Note that all α larger than 
P(x∈WS|H0) are called significance of this test. Let’s think of α now as the 
smallest significance.

Si l Back-
Errors:
Reject H0 for background events ⇒ Type-I error α
Accept H0 for signal events ⇒ Type-II error β

Signal Back
ground

Signal ☺
Type-2 
errorp 0 g yp β

4343
β=/∉ )|( SWxP r Back-

ground
Type-1 
error ☺



Efficiencies

Signal efficiency:

Probability to accept signal events as signal reject S accept SProbability to accept signal events as signal

βε −== ∫
∞

1)|(
cutyS dySyg

g(y|S)g(y|B)

1-β also called “the power” y(x)

ycut αβ
Background efficiency:

Probability to accept background events as signal

αε == ∫
∞

cut

)|(
yB dyByg
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Neyman – Pearson test

Design test in n-dimensional input space by defining critical region WS. 
Selecting event in WS as signal with errors α and β:

BW B
S

xdxf εα == ∫
rr)( SW S

S

xdxf εβ −=−= ∫ 1)(1 rr
and

A good test makes both errors small, so chose WS where fB is small 
and fS is large, define by likelihood ratio

c
xf
xf

B

S ≥
)(
)(
r

r

Any particular value of c determines the values of α and β.
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Neyman – Pearson Lemma
)()|()( xfSxP S
rr

Lik lih d ti
Accept 

)(
)(

)|(
)|()(

xf
f

BxP
xy

B

S
r rr ==Likelihood ratio

“The likelihood-ratio test as selection 
criteria gives for each selection efficiency 
“The likelihood-ratio test as selection 
criteria gives for each selection efficiency 

1

‐α

p
nothing

g y
the best background rejection.”

It maximizes the area under the ROC-curve

g y
the best background rejection.”

It maximizes the area under the ROC-curve

1‐
ε B

ac
kg
r.=
1‐

in
g 
ty
pe

‐1
 e
rr
or

“Receiver Operating Characteristics” (ROC) 
curve plots (1-) the minimum type-II error as a 
function of (1-) the type-I error. The better the 
classifier the larger the area under the ROC 

“Receiver Operating Characteristics” (ROC) 
curve plots (1-) the minimum type-II error as a 
function of (1-) the type-I error. The better the 
classifier the larger the area under the ROC 0 1

0

1

Degreasing type‐2 error

βε −=1

D
eg
re
as
i

Accept 
everything

From the ROC of the classifier chose the working point

curve.curve. 0 1βε −=1Signal

need expectation for S and B

Cross section measurement: maximum of S/√(S+B)  or equiv. √(ε·p)
Discovery of a signal: maximum of S/√(B)y g ( )
Precision measurement: high purity (p)
Trigger selection: high efficiency (ε)
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Realistic event classification

Neyman-Pearson lemma doesn’t really help us since true densities are 
typically not known!

Need a way to describe them approximately:
MC simulated events
Control samples derived from data (even better but generally more difficult to get)

Use these “training” events to
• Try to estimate the functional form of fS/B(x) from which the likelihood ratio can be 

obtained 
e.g. D-dimensional histogram, Kernel density estimators, MC-based matrix-element 
methods, …

• Find a “discrimination function” y(x)  and corresponding decision boundary (i.e. y( ) p g y (
affine hyperplane in the “feature space”: y(x) = const) that optimally separates signal 
from background
e.g. Linear Discriminator, Neural Networks, Boosted Decision, Support Vector 
Machines, …

⇒ Supervised Machine Learning (two basic types) 4747



Machine Learning

Computers do the hard work (number crunching) but it’s 
not all magic. Still need to …

• Choose the discriminating variables, check for correlations
• Choose the class of models (linear, non-linear, flexible or less flexible)

T th “l i t ”• Tune the “learning parameters”
• Check the generalization properties (avoid overtraining)
• Check importance of input variables at the end of the training

ff• Estimate efficiency
• Estimate systematic uncertainties (consider trade off between statistical and 

systematic uncertainties)

Let’s look at a few:
Probability density estimation (PDE) methods
Boosted decision trees
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PDE methods

Construct non-parametric estimators    of the pdfs and          
and use these to construct the likelihood ratio:

ˆ

)|( Sxf r )|( Bxf rf̂

M th d b d t i th t i i l i t PDE f i l

)|(ˆ
)|()(

Bxf
Sxfxyr r

r
r
=

Methods are based on turning the training sample into PDEs for signal 
and background and then provide fast lookup for

T b i t

)(xyr
r

Two basic types
Projective Likelihood Estimator (Naïve Bayes)

Multidimensional Probability Density EstimatorsMultidimensional Probability Density Estimators
Parcel the input variable space in cells. Simple example: n-dimensional histograms
Kernels to weight the event contributions within each cell. 
Organize data in search trees to provide fast access to cellsg p
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Projective Likelihood Estimator

Probability density estimators for each input variable (marginal PDF) 
combined in overall likelihood estimator, much liked in HEP.

PDE for each

∏
∈

⎞⎛
= }variables{

Signal )(
)( k

k
i

k

i

xf
xy r

likelihood 
ratio for 
event i

PDE for each 
variable k

∑ ∏
∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

}Background,Signal{ }variables{

)(
U k

k
i

k
U xf

event i

Normalize 
with S+B

Naïve assumption about independence of all input variables
Optimal approach if correlations are zero (or linear Æ decorrelation)
Otherwise: significant performance loss

Advantages: 
independently estimating the parameter distribution alleviates the problems from the 
“ f di i lit ”“curse of dimensionality”
Simple and robust, especially in low dimensional problems
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Estimating the input PDFs from the sample

Technical challenge, three ways:

¾ Parametric fitting: best¾ Parametric fitting: best
¾ but variable distribution function must be 

known. Cannot be generalized to a-priori 
unknown problems.

¾ Use analysis package RooFit.

¾ Non-parametric fitting: ideal for machine learning
¾ Easy to automate Nonparametric fitting¾ Easy to automate
¾ Can create artifacts (edge effects, outliers) or 

hide information (smoothing) 
¾ Might need tuning.

p g

Binned (uses histograms)
• shape interpolation using spline
functions or adaptive smoothing

¾ Event counting: unbiased PDF (histogram)
¾ Automatic
¾ Sub optimal since it exhibits details of the

Unbinned (uses all data) 
• adaptive kernel density estimation 
(KDE) with Gaussian smearing

¾ Sub-optimal since it exhibits details of the 
training sample

5151

Validation of goodness‐of‐fit afterwards



Multidimensional PDEs
Incorporates variable correlations, suffers in higher dimensions from lack of 
statistics!

PDE Range Search
test event

PDE Range-Search
Count number of reference events (signal and background) in a 
rectangular volume around  the test event

k N t N i hb

H1
x2

k-Nearest Neighbor
Better: count adjacent reference events till statistically significant 
number reached (method intrinsically adaptive)

PDE F

H0

x1

PDE-Foam
Parcel input space into cells of varying sizes, each cell contains representative information 
(the average reference for the neighborhood)
Advantage: limited number of cells, independent of number of training events

G i k lN k l i hti

• Fast search: binary search tree that sorts 
objects in space by their coordinates

• Evaluation can use kernels to determine

Gaussian kernelNo kernel weighting

Evaluation can use kernels to determine 
response
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Curse of Dimensionality

Problems caused by the exponential increase in volume associated 
with adding extra dimensions to a mathematical space:

Volume in hyper-sphere becomes 
negligible compared to hyper-cube

All the volume is in the corners

0
)2(2

limlim 1

2

cube

sphere =
Γ

= −∞→∞→ DDV
V

D

D

DD

π

Distance functions losing their
usefulness in high dimensionality.

0lim
min

minmax =
−

∞→ d
dd

D

⇒ Finding local densities in a many-dimensional problem requires a lot 
of data. Nearest neighbor methods might not work well.

Especially if non-significant variables are includedEspecially if non-significant variables are included.

⇒ In many dimensions it is better to find the separation borders not by 
using the likelihood ratiousing the likelihood ratio.
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Boosted Decision Tree
DecisionTree (DT)DecisionTree (DT)
Series of cuts that split sample set into ever 
smaller subsets

GrowingGrowing
Each split try to maximizing gain in separation ΔG

S,B

2211 GNGNNGG −−=Δ

nodenode BSG =

Gini‐ or inequality index:

Leafs are assigned either S or B
2) Boosting method Adaboost
B ild f t f DT

S1,B1 S2,B2 ( )2nodenode
node BS

G
+

=

Event classification
Following the splits using test event variables until 
a leaf is reached: S or B

P i

Build forest of DTs:
1.Emphasizing classification errors in DTk: 

increase (boost) weight of incorrectly 
classified events

2.Train new tree DTk+1Pruning
Removing statistically insignificant nodes

Bottom-up
Protect from overtraining

k+1

Final classifier linearly combines all trees
DT with small misclassification get large 
coefficient

DT dimensionally robust and easy to understand 
but alone not powerful !

Good performance and stability, little tuning needed.
Popular in HEP (Miniboone, single top at D0)
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Multivariate summary

Multivariate analysis packages:
• StatPatternRecognition: I.Narsky, arXiv: physics/0507143 
⇒ http://www.hep.caltech.edu/~narsky/spr.html

• TMVA: Hoecker, Speckmayer, Stelzer, Therhaag, von Toerne, Voss, arXiv: physics/0703039
⇒ http://tmva.sf.net or every ROOT distribution

• WEKA: ⇒ http://www.cs.waikato.ac.nz/ml/weka/
Huge data analysis library available in “R”: ⇒ http://www r project org/Huge data analysis library available in R : ⇒ http://www.r-project.org/
Support training, evaluation, comparison of many state-of-the-art classifiers

How to proceed: chose most suitable method then:How to proceed: chose most suitable method, then:

Use MVA output distribution, fit to estimate number of signal 
and background events.

or
Chose working point for enhance signal selection. Use an 
independent variable to estimate parameters of underlying 
physics of signal process.p y g p

Parameter estimation 5555



Estimation of variable properties

Estimator:
A procedure applicable to a data sample S which gives the numerical 
value for avalue for a …

a) property of the parent population from which S was selected
b) property or parameter from the parent distribution function that generated S

Estimators are denoted with a hat ∧ over the parameter or propertyp p p y

Estimators are judged by their properties. A good estimator is

consistent

unbiased

aa
N

=
∞→

ˆlim

aa =ˆ
For large N any consistent estimator becomes unbiased!

Efficient 
More efficient estimators a more likely to be close to true value There is a theoretical

small is )ˆ(aV
More efficient estimators a more likely to be close to true value. There is a theoretical 
limit of the variance, the minimum variance bound, MVB. The efficiency of an estimator 
is                  . 5656)ˆ(aVMVB



A mean estimator example

Estimators for the mean of a distribution
1) Sum up all x and divide by N
2) Sum up all x and divide by N-1

Consistent Unbiased Efficient

1 √ √ √

2 √ × √) p y
3) Sum up every second x and divide by int(N/2)
4) Throw away the data and return 42

3 √ √ ×

4 × × ×
Law of large g
numbers

μμ =→=
+++

≡ xx
N

xxx N...ˆ 21

+++1) 3) is less efficient than1)
μμ =

+++
=

+++
≡

N
xxx

N
xxx N LL21ˆ

1)

+++ Nxxx N...ˆ 21

) )
since it uses only half the data. 
Efficiency depends on data 
sample S.

Note that some estimators are always 
consistent or unbiased. Most often the 
properties of the estimator depend on μμμ ≠

−
=

−
+++

≡
11

ˆ 21

N
N

N
xxx NL

μμ =→
−

=
−

+++
≡ xx

N
N

N
xxx N

11
...ˆ 21

2)
the data sample.
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Examples of basic estimators

Estimating the mean:
Consistent, unbiased, maybe efficient: 

x=μ̂
( )

N
V

2

ˆ σμ = (from central limit theorem)

Estimating the variance, …
a) when knowing the true mean μ:

This is usually not the case!
∑ −= 2)(1)( μix

N
xV

This is usually not the case!

b) when not knowing the true mean: ∑ −
−

== 22 )(
1

1)( xx
N

sxV i

Note the correction factor of N/(N-1) from the naïve expectation. Since    is closer to the 
average of the data sample S than the mean μ, the result would underestimate the 
variance and introduce a bias!

1N

x

A more general estimator for a parameter a and a data sample 
{x1,x2,…,xN} is based on the likelihood function { 1, 2, , N}

5858
∏= );();,,,( 21 axPaxxxL iNK



Maximum likehood estimator

Variable x distributed according to pdf P which depends on a:

Sample S of data drawn from according to P:

);( axP

{ }xxxSSample S of data drawn from according to P: 

Probability of S being drawn:  Likelihood

{ }NxxxS ,,, 21 K=

∏=
N

iN axPaxxxL 21 );();,,,( K

For different                we find different likelihoods 

=i 1

K),;(),;( 21 aSLaSLK,, 21 aa

ML principle: a good estimator              of a for sample S is the one with 
the highest likehood for S being drawn:

);(ˆ aSa

)(ld SL I i l L

Thi i ll d th M i lik lih d (ML) ti t

0
d

);(lnd
ˆ

=
=aaa

aSL In practice use ln L
instead of L⇒ easier

This is called the Maximum likelihood (ML)-estimator
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Properties of the ML estimator

Usually consistent

Invariant under parameter transformation: )ˆ()( afaf =Invariant under parameter transformation:

Peak in likelihood function:

)()( afaf =

0
d
d

d
lnd

d
lnd

ˆ)ˆ(ˆˆ

==
==== aaafffaa a

f
f
L

a
L

Price to pay: ML estimators are generally biased !
Invariance between two estimators is incompatible with both being unbiased !

)(fff

Invariance between two estimators is incompatible with both being unbiased !
Not a problem when sample size N is large! Remember, consistent estimators become 
unbiased for large N.

At large N an ML estimator becomes efficient !
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Error on an ML estimator for large N
Expand         around its maximum   . We have seen

Second derivative important to estimate error:

0
d

);,,(lnd
ˆ

1 =
=aa

N

a
axxL K

2

2

d
lnd L

âLln

One can show for any unbiased and efficient ML estimator (e.g. large N)

2d a

2

2

d
lnd)( LaA −=( )axxaaAaxxL

N
N −= ),,(ˆ)(

d
);,,(lnd

1
1 K
K

, with proportionality factor

The CLT tells us that the probability distribution of    is Gaussian. For this to be (close to be) true A must 
be (relatively) constant around

2d
)(

a
( )

a N ),,()(
d 1 , p p y

â
aa ˆ=

2
)],,,(ˆ[

21

2
21

);,,,(
NxxxaaA

N eaxxxL
K

K
−

∝⇒
21 )( N

For large N the likelihood function becomes Gaussian, 
the log-likelihood a parabola

6161

The errors in your estimation you can read directly of 
the ln L plot. 



About ML

Not necessarily best classifier, but usually good to use. You need to assume the 
underlying probability density P(x;a)

Does not give you the most likely value for a, it gives the value for which the 
observed data is the most likely !

Usually can’t solve analytically, use numerical methods, such 
as MINUIT. You need to program you P(x;a)

0
d

);(lnd
ˆ

=
=aaa

aSL

Below the large N regime, LH not a Gaussian (log-LH not a parabola)
• MC simulation: generate U experiments, each with N events. Find and plot MLE. Use graphical 

solution: plot lnL and find the points where it dropped by 0.5, 2, 4.5 to find ±σ, ±2σ, ±3σ
• Perhaps use transformation invariance to find a estimator with Gaussian distribution
• Quote asymmetric errors on your estimate

No quality check: the value of                 will tell you nothing about how good 
your P(x;a) assumption was

)ˆ;(ln aSL
your P(x;a) assumption was
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Least square estimation

Particular MLE with Gaussian distribution, each of the sample points 
has its own expectation              and resolution);( axf i iσ

iy

22 2)];([

2
1);( iii axfy

i
i eayP σ

σπ
−−=

To maximize LH, minimize ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

i i

ii axfy
2

2 );(
σ

χ );( axf

Fitting binned data:

Proper χ2:
( )

∑
−

= jj

f
fn 2

2χ

Simple χ2: 
(simpler to calculate)

∑
j jf

nj content of bin i follows poisson
statistics

fj expectation for bin i, also the 
d

( )
∑

−
=

j j

jj

n
fn 2

2χ
(simpler to calculate)
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Advantages of least squares

Method provides goodness-of-fit 
The value of the χ2 at its minimum is a measure of the level of agreement between the 
data and fitted curve.
χ2 statistics follows the chi-square distribution 
Each data point contributes            , minimizing      makes it smaller by ≈1 per free 
variable
Number of degrees of freedom

);( 2 nf χ
12 ≈χ 2χ

NNn =Number of degrees of freedom

χ2 has mean n and variance 2n

varbin NNn −=

χ has mean n and variance 2n

If χ2/n much larger than 1 something 
might be wrongmight be wrong 

n should be large for this test. Better to use 
which has mean             and variance 1,

and becomes Gaussian at n~30.
22χ 12 −n
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Error Analysis

Statistical errors:
How much would result fluctuate upon repetition of the experiment

Also need to estimate the systematic errors: uncertainties 
in our assumptionsin our assumptions

Uncertainty in the theory (model)
Understanding of the detector in reconstruction (calibration constants)
Simulation: wrong simulation of detector response (material description)Simulation: wrong simulation of detector response (material description)
Error from finite MC sample (MC statistical uncertainty)
⇒ requires some of thinking and is not as well defined as the statistical erro
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