MC generators

Gökhan Ünel / UC Irvine

ISTAPP 2011

Introduction

We would like to know

- ✤the cross section of a process we care about;
- the impact of the accelerator on which we work;
- the result of the parton distribution function selection;
- ∞all the Feynman diagrams for a given final state;
- branching fractions of a decaying particle

We would like to have

- Nice drawings of Feynman diagrams;
- Nice plots of differential cross sections, parameter dependencies etc..
- MC Events on which further analysis can be performed.

in ANY MODEL.

A subjectively selective list

Dedicated MC generators

~

 Alpgen : bosons + Njets, JHEP 0307:001,2003, <u>hep-ph/0206293</u>.
 protos : top (or heavier) quarks : <u>http://www-ftae.ugr.es/protos/</u>
 pandora : e+ / e- / γ @ LC: <u>http://www-sldnt.slac.stanford.edu/nld/</u> <u>new/Docs/Generators/PANDORA.htm</u>

CompHEP (CalcHEP)

Computational tool to

∞ calculate interaction cross sections in tree level (more on this later)

- calculate branching fractions
- make plots, Feynman diagrams and generate events

Solution → Freely available from the web

- <u>http://comphep.sinp.msu.ru/</u>
- http://theory.sinp.msu.ru/~pukhov/calchep.html

Initially proposed by a colleague from Baku (now in Ankara)

The GaP project of computer aided theoretical calculations for future gamma p, gamma e, gamma gamma colliders physical programs.
E. Boos, M. Dubinin, V. Edneral, V. Ilvin, A. Pukhov, V. Savrin (Moscow State U.), G. Jikia, S. Shichanin

(Serpukhov, IHEP), S. Sultanov (Baku, Inst. Phys.). Mar 1991. 10pp. Prepared for 9th International Conference on Computing in High-energy Physics (CHEP 91), Tsukuba, Japan, 11-15 Mar 1991. Published in Tsukuba 1991, Computing in high energy physics 391-400

CompHEP 4.5.1

→Works on Unix (Linux, OSX, etc.)

∞Do the following to install it in your computer

Register to download & download a TGZ file. (comphep-4.5.1.tgz)

done for th

Already

computers

TAPP

S

tar xzf comphep-4.5.1.tgz ; cd comphep-4.5.1

∞./configure (dont mind the warning about the CERNLIB)

∞make

once

Do it

make setup WDIR=\${HOME}/istapp2011/comphep_workdir (make a new dir for each project)

Complete Stapp2011/complete __workdir ; ./complete __workdir ; ./

∾Now we are ready to run

Model selection

QED

Effective 4-fermion SM, unitary gauge SM, Feynman gauge MSSM, unitary gauge MSSM, Feynman qauge <u>SUGRA, Feynman</u> qauqe GMSB, Feynman gauge SM ud SM gQ fourthfam gqh qqhFG _ff-ggh E6-simple compo LittleHiggs

PqDn

by default comphep has QED,SM,susy..
You may add your own model in 4 items
1. Variables (masses, mixings)
2. Constraints (CKM unitarity)
3. Particle definitions (add fermions or bosons)
4. Lagrangian (the new interactions)

Solution → Define composites to have: Jets, W+/W-,...

Effective lagrangians to imitate well known loops possible. e.g. ggh *effective* vertex

Beam & process selection

Select the machine: (LEP, LHC..)

 \sim Proton, electron, μ , γ beams are available

 with lots of options (PDF, ISR, Beamstrahlung, Compton backscattering photon) allows simulation of processes in the existing (or new) colliders.

Missing: beam polarization not available (CalcHEP2.5j onwards has it.)

∞ 2 in, max 7 out !

Select the process: (collision or decay)

s(S)

H(H)

vinitial and final particles to be declared

nit	ial and fina	I partic
	gluon W boson mu-neutrino tau-lenton	A(A) ne(Ne) m(M) u(U)

c(C) c-quark b(B) b-quark

G(G) W+(W-) rum(Num) l(L)

p1 (u,d,U,D,G)	PDF:	cteq611(p
P1 (u,d,U,D,G)	PDF:	cteq611(a
p (u,d,U,D,s,c,S,C,G)	PDF:	cteq611(p
P (u,d,U,D,s,c,S,C,G)	PDF:	cteq611(a
pb (u,d,U,D,s,c,S,C,b,B,G)	PDF:	cteq611(p
Pb (u,d,U,D,s,c,S,C,b,B,G)	PDF:	cteq6l1(a
ebeam (e)	PDF:	ISR(100 E
Ebeam (E)	PDF:	ISR(100 E
gamL (A)	PDF:	Laser pho
gamE (A)	PDF:	WWA (m=0.
p1-noPDF (u,d,U,D,G)	PDF:	OFF
p-noPDF (u,d,U,D,s,c,S,C,G)	PDF:	OFF

intermediate state particles can be excluded or they can be forced.

Enter Final State: e,E -> m,M Exclude diagrams with <mark>H</mark> Keep diagrams with Z

Order of things

1) Choose a model

lets work within the SM for the moment.

2) Choose a process

- we also chose the collider on which this process is happening.
- 3)Take the square of the Feynman Diagrams and have the result written in "C" language
 - Look at the proposed diagrams, do not run blindly.
 - make a separate directory for each process you need to study.
- 4) compile the "C" code to make a numerical study.
 - You obtain the calculation results at this step.

Lets see the details...

test drive...

Start with SM (Unitary gauge)
 Enter the process you study:

∞e+ e- → γ/Z → μ+ μ- is the "hello world" of CompHEP.

- ✤Do the below steps in the given order:
 - ∞ Square diagrams, Symbolic Calculations, Write results (C), C-compiler
- Now a new file, n_comphep, is created in the "results" directory.
 This binary file will be needed later on.
- Beam Energy, ISR & BS (depending on your accelerator) should be set.

Histograms of the interesting quantities should be booked.

Numerical Session

Sor simple processes set

- ∾ltmx=10 & nCall=20000
- \sim or increase nCalls until $\chi^2 \sim 1$ in the result.

Numerical Session

Generate events

Itmx = 10 nCall = 20000 Set Distributions Start integration Display Distributions Combine ROOT-hist Clear statistic Clear grid

Book histograms to understand the process.

These distributions will show you why some calculations might not be converging or which cuts will help best to find the signal events.
(sub)Process: e, E -> m, M

Second Secon

	(sub)Proces	s: e,E	-> m,1	M		
		Dis	stribu	tions		
	-Clr-Rest-Del-	Size—				
	Parameter	> Min	bound	< > Max	bound	<
	M34	10		500		
	T 3	10		100		
						I

M34: invariant mass of particle 3 & 4 T3 : Transverse momentum of particle 3

"Start Integration" is used to get the solutions and to fill the previously booked histograms.

cross sections

Cross section results depends on the experimental conditions

✓Lets check the x-section variations on a 500+500 GeV e+e- collider via µ+µproduction.

✤This is our test process

	Initial state
C	Beamstr.: 560,0.40,2.0E+10)
	ISR scale (GeV) = 100.0 Beamstralung ON Bunch x+y sizes (nm)= 560 Bunch lenght (mm) = 0.40 Number of particles = 2.0e+10 * N_cl = 1.53 * Upsilon = 0.08

measurement conditions	cross section (fb)
needle beams	113
needle beams w/ measurability of outgoing particles	110
realistic beams (ISR,BS)	338
realistic beams w/ measurability of outgoing particles	162

all e- same energy

one obtains..

cross section (in pb)

di-muon invariant mass distribution

- ∞ latex & text output possible.
- ∞ log & linear Y axis possible.
- Spline fit to the spectrum

Monte	e Carlo session: 1	(continue)		
#IT 20	ross section [pb]	Error %	nCall	chi **2
15	3.0972E-01	1.70E-01	19404	
16	3.0938E-01	1.77E-01	19404	
17	3.0964E-01	1.81E-01	19404	
18	3.0919E-01	1.84E-01	19404	
19	3.0989E-01	1.88E-01	19404	
20	3.0916E-01	1.95E-01	19404	
< >	3.0945E-01	4.35E-02	388080	0.5

(sub)Process: e,E -> m,M

500+500 GeV, e+e- beam

A more complicated example

collider

examined.

Event selection-cuts

To impose some selection at the generator level:

to select certain event types or later to separate signal & bg.

To obtain a more realistic cross section:

Certain particles (low E or high η) can not be recored.

To be able to obtain the cross section:

Some QCD processes have IR divergences, to make the calculations converge we need to impose some restrictions.

	12> 3 4	
(sub)Proces	ss: e,E -> m,M Cuts	
Parameter T3 T4 Y3 Y4	> Min bound < > 10 10 -2.5 2 -2.5 2	• Max bound < 2.5 2.5

T : Transverse momentum 1st line records μ- which have transverse momentum > 10 GeV

Y : rapidity

15

Assume I have an inner detector which sits between ± 2.5 in eta, lines 3 & 4 represent this constraint.

Photon beam

Seame: WW photons (ISR,BS)

Scattering (ICS) photons

what to do with this tool?

- →We could study a particular mode. (e.g. its measurability)
 - ∞Enter the Lagrangian of the model you want to study into CompHEP.
- We could obtain the cross sections and branching fractions
- Generate MC events
- Mix events from separate sub-processes
 At this point the process could be studied at the generator level.
 Hadronization via another tool, (Herwig/Pythia)
 Detector simulation via another tool, (PGS/Delphes)
- ∞We could study the MC events as if they were real data.

Advanced topics

Event Generation

might be needed to feed to other programs.

'Kinematics' settings

∞ might needed for the 2 in 4 out processes.

'Regularization' options

might be needed when there are a multitude of same outgoing particles (e.g. two Z bosons).

Run in 'Batch mode' - scripting

might be needed to scan the x-section as a function of a parameter (e.g. mass of Higgs boson)

Event Generation

From the "Generate Events" heading choose the "start search of maxima" option

- ☞ if the maxima is not found, turn off the "simplex" option.
- Do not produce same number of events for all sub-processes, make it proportional to the x-section
 - Make more events for higher x-sections

When the generation is over, a red window appears, waiting for confirmation. Check:

- ✤Any negative events ?
- Service Any multiple ?

Solution The file is written on disk.

Mixing the events

Subprocesses							
r*							
1.	d	U	->	Ne	е		
2.	d	С	->	Ne	е		
3.	U	d	->	Ne	е		
4.	U	S	->	Ne	е		
5.	S	U	->	Ne	е		
6.	S	С	->	Ne	е		
7.	С	d	->	Ne	е		
8.	С	S	->	Ne	е		

Produce events from different sub-processes

- Now we have to merge these and make a single file:

 - merging / mixing coefficients should be proportional to the cross sections of the (sub) processes

There is a scipt to mix & merge the sub-processes

- ∞ cd results
- ∞../mix events_1.txt events_2.txt
- Mixed events are written into the mixed.lhe file.

This text file contains:

Generic Info about the processes (e.g.: initial / final state particles, x-section)
 Specific info about each event (e.g.: energy & momenta of each particle.)

Results directory

comphep is now working

1	ngu	ngu	47	Dec	28	22:34	LOCK	
1	ngu	ngu	3376	Dec	28	21:14	Makefile	Computed
1	ngu	ngu	10240	Dec	28	22:34	diags.tar	Generated events
1	ngu	ngu	1601570	Dec	28	22:51	events_1.txt	
1	ngu	ngu	0	Dec	28	22:34	extern.h	
1	ngu	ngu	5696	Dec	28	22:34	f_0.a	
1	ngu	ngu	999	Dec	28	21:14	n_comphep*	script to re-study the
1	ngu	ngu	257280	Dec	28	22:34	n_comphep.exe	Current process
1	ngu	ngu	2071	Dec	28	22:51	prt_1	current process
1	ngu	ngu	2029	Dec	29	23:51	prt_10	
-				-			-	

details of the session 10

Kinematics 1

Solwight >> 500+500 GeV ideal beams and calculate the W⁺ W⁻ production.

∞ cross section = 2677 fb,

∼ W BF for μ decay: BR(W→ μ v)=0.11

→ final x-section (ee→WW→ μ v μ v)= 2677*0.11*0.11=

∾ 32fb.

(sub)Process: e,E -> W+,W-Monte Carlo session: 1(begin)

#IT	Cross section [pb]	Error %	nCall 20000	chi * * 2
2	2.6781E+00	4.31E-02	20000	
3 1	2.6772E+00 2.6773E+00	2.01E-03	20000	
5	2.6773E+00	3.58E-04	20000	
6	2.6773E+00	3.61E-04	20000	
8	2.6773E+00	3.58E-04 3.67E-04	20000	
9	2.6773E+00	3.75E-04	20000	
10 < >	2.6773E+00 2.6773E+00	3.82E-04 1.40E-04	20000	0.7

Kinematics 2

X CompHEP version 4.4.3

(sub)Process: e,E -> nm,Nm,m,M Monte Carlo session: 1(continue)

23

∞error & χ² too large!

Why? Check the Kinematics option. The process you want to study is <u>not</u> this one !

∞ particles 4,5,6 are not coming from the decay of particle 3..

Computer doesn't know physics, you do.

Define the correct kinematics:

(sub)Process: e,E -> nm,Nm,m,M Monte Carlo session: 1(continue) ======= Current kinematical scheme ==== in= 12 -> out1= 45 out2= 36 in= 45 -> out1= 4 out2= 5 in= 36 -> out1= 3 out2= 6

					vogus
#IT 15 16 17 18 19 20 < >	Cross section 1.1974E-02 1.3530E-02 1.9285E-02 1.6392E-02 1.6552E-02 3.3263E-02 7.7556E-03	[pb] Error % 3.07E+01 2.40E+01 2.36E+01 2.07E+01 2.34E+01 5.65E+01 6.40E+00	nCall 17280 17280 17280 17280 17280 17280 17280 345600	chi**2	* nCall = Set Distr Start inte Display Di Clear stat Clear gri
9 10 < > 11 12 13 14	7.8369E-03 1.1394E-02 7.0090E-03 2.4123E-02 5.7536E-03 7.5094E-03 1.5524E-02	3.368+01 3.14E+01 8.88E+00 5.14E+01 2.32E+01 1.86E+01 3.64E+01	17280 17280 172800 17280 17280 17280 17280 17280	2	Generate e

F1-Help F2-Man F6-Results F9-Quit

(sub)Proe Monte Car	cess: e,E -> rlo session:	nm,Nm,m,M 1(continue)	
	Current kine	ematical scheme	
$\frac{1n}{1n} = \frac{12}{456}$	-> out 1= 3 -> out 1= 4	out2 = 450 out2 = 56	
in= 56	-> out1= 5	out2= 6	

Vogac

10

tribut stic

rents

Kinematics 3 & Regularization

Fixing the kinematics should aet the correct answer.	(su Mon	b)Process: e,E -> te Carlo session:	nm, Nm, m, M 1(continue)	
3 - - - - - - - - - -	14	3.5138E-02	8.59E-01	17280
∾ In this case : 33.6 fb. 👡	15 16	3.4797E-02 3.4986E-02	9.76E-01 1.01E+00	17280
	17	3.4614E-02	9.02E-01	17280
\sim Always check the error & χ^2 .	18	3.4403E-02	1.02E+00	17280
	19	3 5140E-02 3 4006E-02	9.95E-01 0 10F-01	17280
Apply regularization if orror	21	3.5151E 02	1.02E+00	17280
Apply regularization in entri	< >	3.3646E-02	2.58E-01	362880
& χ ² are too large	9	3.4319E-02	1.02E+00	17280
Coosifi unbish internessiste	10	3.5114E-02	1.19E+00	17280
Specily which intermediate	11	3.5418E-02	1.10E+00	17280
particle decays to which final	12	3.5472E-02	1.03E+00	17280
state narticle				

24

•	Mass and	Width	values	s to be	~
	specified,	power	= 2 alv	ways.	

5

	(aut) r r ocea	. c,u	- 100, 1000, 10,	11
		Reg	ularizatio	n 1
1	-Clr-Rest-Del-	Size——		
	Momentum	> Mass	< > Width	< Power
	<mark>3</mark> 6	MW	wW	2
	45	MW	WW	2
		-	-	-

Mm m M

Batch processing -1

∞ Go to the comphep_workdir

Need to run ./num_batch.pl once (no arguments)

∞ to get the total x-section from all sub processes:

- ./num_batch.pl -run vegas ==> prints all steps on screen
- w./num_batch.pl -run vegas | awk 'BEGIN{s=0} {s+=\$3}
 END{ print s}' ==> prints the total x-section on screen

One can select the process to work on

> ./num_batch.pl -run vegas -proc 1,3-5,17,2

✓ It is possible to generate events on all subprocesses:

- ./num_batch.pl -nevnt 5000 (5K events from each sub-process)
- ./num_batch.pl -run (for each sub-process, calculate & generate events)

Subprocess Z (u, c - 2 me, c)

End of CompHEP numerical session. Subprocess 3 (U,d -> Ne,e)

End of CompHEP numerical session. Subprocess 4 (U,s -> Ne,e)

End of CompHEP numerical session. Subprocess 5 (s,U -> Ne,e)

End of CompHEP numerical session. Subprocess 6 (s,C -> Ne,e)

End of CompHEP numerical session. Subprocess 7 (C,d -> Ne,e)

End of CompHEP numerical session. Subprocess 8 (C,s -> Ne,e)

End of CompHEP numerical session. File results/batch.dat is created.

Batch processing -2

#!/bin/bash
rd=/HEP/chep/scripts
outn=\$1

}

\${rd}/set_momenta 7000 7000
\${rd}/set_vegas 10 20000
#\${rd}/set_cuts Y3 -3.2 3.2

```
#if the same name is given, we purge the old data
rm -f ${outn}.sub*
```

for Mde in 100 150 200 250 300 350 400 500 600 700 800 ; do {
 \${rd}/set_param Mde \${Mde}
 \${rd}/set_qcd \${Mde}
 St=0.045
 echo \${Mde} \${St} >>\${outn}
 \${rd}/set_param St \${St}

```
# run and save results
for ((sp=1; sp<35; sp++)); do
    ${rd}/select_sub ${sp}
    #${rd}/run_vegas
    echo $sp
    sesno=`grep "Session_number" session.dat| cut -f2 -d' ' `
    tail -1 prt_${sesno} >>${outn}.sub${sp}
    done
```


- download the comphep/calchep commands from Gokhan's web page
- ▶ put them in a location on your computer (e.g. / HEP/chep/scripts)

merge these into a shell script for finer control over the calculations

CalcHEP

∞Different software from same common origin as CompHEP.

Small difference

Small differences:	Model: Standard Mod List of partic	el les (antiparticles)	
∾Higgs is h <u>not</u> H	G(G)- gluon W+(W-)- W-boson ne(Ne)- e-neutrino	A(A)- photon h(h)- Higgs m(M)- muon	Z(Z)- Z-boson e(E)- electron nm(Nm)- m-neutrino
"proton" not defined!	l(L)- tau-lepton u(U)- u-quark b(B)- b-quark	nl(Nl)- t-neutrino s(S)- s-quark t(T)- t-quark	d(D)- d-quark c(C)- c-quark
✤But polarization defined.			
Sector Secto			
$\begin{array}{c c} e \\ E \end{array} \xrightarrow{A} \begin{array}{c} t \\ T \end{array} \end{array} \begin{array}{c} e \\ E \end{array} \xrightarrow{Z} \begin{array}{c} t \\ T \end{array} \end{array} \begin{array}{c} t \\ E \end{array} \end{array}$	Enter process: <mark>p, p -> t,</mark> composit 'p' consists of: e e e	TudGUDCCSSbB CalcHEP/num	
Model: Standard Model	(sub)Process: e 1.1246 Monte Carlo session: 1	58E-312> t, T (begin)	IN state
Process: e%, E% -> t, T		< S.F.1: OFF	
Feynman diagrams diagrams in 1 subprocesses diagrams are deleted.	27	S.F.2: OFF First particle mo Second particle mo Helicity of first Helicity of second	omentum[GeV] = 1000 omentum[GeV] = 1000 t particle 0 d particle 0

Polarization dependence of σ

SLAC e- & e+ beams were polarized...

About MadGraph

Gökhan Ünel / UC Irvine

ISTAPP 2011

General Information

Similar to C**HEP, tree level cross section calculation and event generation, V4.4.x (V5 is in beta version)

*to register & download: http://madgraph.hep.uiuc.edu/

Would work on nay unix, supports single(multi) core and pbs.

requires fortran, results in html format.

- implementing a new model is not very easy
- Only proton/Anti-proton collider defined
 - ∞ different PDFs are available.

polarization ve matching is possible

Notation slightly different

SM

SM w/o Higgs boson SM (with CKM) HiggsEFT MSSM Simplified 2HDM Full 2HDM BSM with tops Quarkonium production in SM

> p > t t~ (antiparticle is shown with "~"; "," & p~ doesn't exist.)
> " x x > z > y y y " ==> force z particle to be in the s-channel.
> " x x > y y y /z" ==> do not have z at all.

Setting up & installing

Show the work of the work

(we did this step for you)

(please do this now)

- ∞cd istapp2011/mg_me
 ∞cd MadGraphII; make ; cd ...
- Template directory is to be backed up: (please do this now)
 *tar czf Template.tgz Template-0/

wmv Template-0 Deneme; cd Deneme

- To work on a new process
 - Sy cleaning the old one :
 - → bin/clean and enter a new process we'll see how.
 - Sy making a new directory:
 - ∞ tar xzf Template.tgz ; mv Template-0 NewProject

Example process

Enter the new process in "proc data card".

wnedit Cards/proc card.dat

e+e-	->mu+mu-	@Ø	#	Fi	rst	Proc	cess
QCD₌	=4			#	Max	QCD	couplings
QED₌	=4			#	Мах	QED	couplings
end_	_coup			#	End	the	couplings

Process & accelerator properties are in "run data card"

∞nedit	Cards/run_card.dat	# Collider #*****	type and energy
20 = ptj 10 = ptb 10 = pta 10 = ptl	! minimum pt for the jets ! minimum pt for the b ! minimum pt for the photons ! minimum pt for the charged leptons	н 0 0 500 500	= lpp1 ! be = lpp2 ! be = ebeam1 ! = ebeam2 !
To stant.			- eBcdille :

No start:

>>./bin/newprocess

ngu-mbook:Deneme ngu\$ bin/newprocess Using Stand Alone version of MadGraphII Started Wed Dec 31 13:10:42 CET 2008 Running.... ..Finished Wed Dec 31 13:10:42 CET 2008 Compiling libraries in Source cd DHELAS; make f77 -0 -I. -c httsxx.F

A longer example

G3

53.547

2.612

15 6.0

80

1.49

pp>Z>Jbb~ 09 OCD=9 OED=9 end coup

pp collider *Z* production and decay to bb Jets.

Process results s=9163.110±760.220(fb)

Graph	Cross Sect(fb)	Error(fb)	
Sum	9163.110	760.220	
P0 ddx gbbx	1376.700	156.400	
P0 dxd gbbx	<u>1240.500</u>	94.674	/
P0 uxu gbbx	1083.900	93.761	
P0 uux gbbx	1060.000	88.280	
P0 bbx gbbx	625.840	62.016	
P0 bxb gbbx	<u>605.040</u>	52.445	
P0 gd dbbx	324.600	20.416	
P0 dg dbbx	298.770	18.352	
P0 gdx dxbbx	292.830	15.608	
P0 dxg dxbbx	289.450	18.960	
P0 gbx bxbbx	273.830	22.697	
P0 bxg bxbbx	255.510	19.513	
P0 bg bbbx	254.520	2.792	
P0 uxg uxbbx	239.830	17.579	
P0 gux uxbbx	239.150	12.222	
P0 gb bbbx	236.610	19.634	
P0 ug ubbx	234.210	12.679	1
P0 gu ubbx	231.820	13.192	

	Directory	# Diagrams	# Subprocesses	FEYNM	IAN DIAGRAMS	SUBPR	OCESS
•	P0_uxu_gbbx	4	2	<u>html</u>	postscript	u~ u -> g b b~	c~ c -> g b b~
10N	P0_uxg_uxbb	x 2	2	<u>html</u>	postscript	u~ g -> u~ b b~	c~ g -> c~ b b~
	P0_uux_gbbx	4	2	<u>html</u>	postscript	u u~ -> g b b~	c c~ -> g b b~
	P0_ug_ubbx	2	2	<u>html</u>	postscript	u g -> u b b~	c g -> c b b~
	P0_dxd_gbbx	4	2	<u>html</u>	postscript	d~ d -> g b b~	s~ s -> g b b~
	P0_dxg_dxbb	x 2	2	<u>html</u>	postscript	d~ g -> d~ b b~	s~ g -> s~ b b~
	P0_ddx_gbbx	4	2	<u>html</u>	postscript	d d~ -> g b b~	s s~ -> g b b~
	P0_dg_dbbx	2	2	<u>html</u>	postscript	d g -> d b b~	s g -> s b b~
	P0_gux_uxbb	x 2	2	<u>html</u>	postscript	g u~ -> u~ b b~	g c~ -> c~ b b~
	P0_gu_ubbx	2	2	<u>html</u>	postscript	g u -> u b b~	g c -> c b b~
	P0_gdx_dxbb	x 2	2	html	postscript	g d~ -> d~ b b~	g s~ -> s~ b b~
	P0_gd_dbbx	2	2	html	postscript	g d -> d b b~	g s -> s b b~
	P0_gbx_bxbb	x 4	1	html		Diagrams by MadGrap	h d d~ -> g b b~
	P0_gb_bbbx	4	1	html	1	/ ⁵ ¹	
	P0_bxg_bxbb	x 4	1	html	0	b	000000000000000000000000000000000000000
	P0_bxb_gbbx	4	1	html	Junizina	b 4	d
	P0_bg_bbbx	4	1	html	d		hunting
	P0_bbx_gbbx	4	*	html	000000000000000000000000000000000000000	_	d
					2 d graph 1	3 2	graph 2
			56 diagra	ams have			
ddx_gb	<u>bx</u>				1	4 ¹	
s= 137	6.711± 156.40	2(fb)			d	ь	d A
					Jun Zun P	. 3	l l
Graph Ci	ross Sect(fb) Error(ft	b) Events (K)	Eff Unwgt Lumin	osity		percen	Jungung
G2	689.420 107.40	0 15 1	01 13	0.02	d	b	d b
G1	576.740 43.62	9 15	9.3 14	0.02	2 / graph 3	\5 2/	graph 4
G4	57.004 2.76	1 15	5.9 76	1.33			

Short cut

There is a command to do all these in 1 step:

It should be used after defining the process by editing the proc and run cards

./bin/generate_events

index.html is automatically updated after completion:

						-					
Links				Status	Compiling	libr	arie	s			
Process Informati	on		G	eneration Complete	Working o	n suh	nroc	224			
Code Download	<u>d</u>			Available			i i mu		1.d.	wannina	fon
On-line Event Gener	ration		Only	available from the web	PØ_e+	eimu	I+Inu-		10:	warning	101
Results and Event Da	tabase		$\boldsymbol{\mathcal{C}}$	1 runs available							
7		vail	able	Results			ls -l 1968 20901	Event Dec Jan	s/ 6 2007 2 21:26	banner_heade ee2mm_banner	r.txt .txt
Links	Events	Tag	Run	Collider	Cross section (pb)	Events	20459 8948	Jan Tan	2 21:26 2 21:26	ee2mm_events	.lhe.gz hted eve
<u>results</u> <u>banner</u>	Parton-level LHE	fermi	ee2mm	e e 500 x 500 GeV	.10492E+00	100				coemic unitery	

Links Status Generation Complete Process Information Code Download Available On-line Event Generation Only available from the web No runs available Results and Event Database

ngu-mbook:Template ngu\$ bin/generate_events Enter 1 for parallel 0 for serial run 0 Enter run name ee2mm Mon Dec 29 12:03:05 CET 2008 Generating 100 events Cleaning SubProcesses. Cleaning Source: Cleaning lib: Cleaning hin. warning for symbol

ee2mm_unweighted_events.lhe.gz

Details

Accelerator

0	-1	1	2
ideal	Þ	р	Y (WW)

polarisation

PDF

QCD scale

matching

# Collider t #*****	
0	= lpp1 ! beam 1 type (0=N0 PDF)
0	= lpp2 ! beam 2 type (0=N0 PDF)
500	= ebeam1 ! beam 1 energy in GeV
500	= ebeam2 ! beam 2 energy in GeV
# ******* ****	
# Beam polar	ization from -100 (left-handed) to 100 (right-handed
# ***** ******	
0	= polbeam1 ! beam polarization for beam 1
0 #*********	
# PDF CHOICE	: this automatically fixes also alpha_s and its evol
'cteq6l1'	= pdlabel ! PDF set
# Renormaliz	ation and factorization scales

т	– fixed ren scale	Lif true use fixed ren scale
Ť	– fixed_fac_scale	l if true use fixed fac scale
01 1880	$= rixcu_ruc_scutc$	I fixed ren scale
91.1000		
91.1880	= dsqrt_q2fact1	! fixed fact scale for pdf1
91.1880	= dsqrt_q2fact2	! fixed fact scale for pdf2
1	= scalefact	! scale factor for event-by-event s
# **** **		
# Matchin	a - Warnina! ickkw >	
#*****		
0	= ickkw	! Ø no matching, 1 MLM, 2 CKKW matc
	&Cards/	proc card.dat
	/	T

About parton matching

What is this, why to match?

I would like to calculate 2 and 3 gluon final states @ LHC

- \sim 1st process originates from Matrix Element calculation: p p \rightarrow g g
- \sim 2nd process originates from Matrix Element calculation: p p \rightarrow g g g
- ✤During showering, "pythia" does ISR/ FSR as well.
 - See by "chance" it doesn't change (2) but makes a gluon radiate in (1)
 - \sim p p \rightarrow g g BECOMES p p \rightarrow g g g thanks to shower MC

Should I count (1) as 2 gluon final state or 3 gluon final state ?

Reconstruct jets and match with initial parton properties to avoid double counting. (MLM vs CKKW matching)

For details see

<u>http://mlm.web.cern.ch/mlm/talks/lund-alpgen.pdf</u>

<u>http://www.isv.uu.se/thep/courses/QCD/QCD_presentation_David.pdf</u>

Pythia - Delphes interface

∞MG, can be hooked to Pythia, Delphes and PGS.

∞To do the hook (we did this step for you):

~vcd mg_me/

Ref. simulation lecture

wtar xzvf ../../pythia-pgs_V2.0.26.tar.gz

wcd pythia-pgs;make ; cd ...

wtar xzvf ../../ExRootAnalysis_V1.0.6.tar.gz

wcd ExRootAnalysis;make

wcd .../Template

~bin/newprocess

results updated when done
<u>Code Download</u>

On-line Event Generation

Results and Event Database

ngu-mbook:Template ngu\$ bin/generate_events Enter 1 for parallel 0 for serial run 0 Enter run name ee2mm_hepsi Fri Jan 2 21:41:33 CET 2009 Generating 100 events Cleaning SubProcesses. Cleaning Source:

Available

Only available from the web

2 runs available

Final Results

➤ Now MG reports results at 3 levels

Concluding remarks

We learned 3 programs that work at tree level.
 CompHEP, CalcHEP, MadGraph
 For the curious ones: what is MCNLO?

By implementing a particle physics model on the computer we can do lots of calculations within that model.

∞ If the Lagrangian is known, a new model can also be added.

We can produce events from a specific model, at a given collider. These events can be used to:

estimate the measurability of that model, design an experiment
optimize the collider or to design a new one.

A midwinter night's dream

AKA: bomework

Using Comhep (in SM) calculate

- 1. $\mu^+\mu^-$ production cross section at LEP-1 & LEP-2
- 2. W⁺W⁻ production cross section at LHC.

Using MadGraph (in SMCKM) calculate

- 1. W⁺W⁻ production cross section at LHC.
- On a e-γ collider with 500GeV on 500GeV beam energies, produce 100 events for 2jet+MET final states

42

- 1. What is the cross section of this process ?
- 2. Run the events on Delphes to obtain a root file.

