

MONTE CARLO SIMULATION TECHNIQUES

V. ERKCAN ÖZCAN, Boğaziçi University

ISTAPP '11, Istanbul, February 8, 2011

A Brief Outline

- * What is simulation? Monte Carlo?
- * Short story of a CERN experiment
- * Brief introduction to event generators
- * Full simulation of detectors : What can Geant4 do, what does it cover?
- * Fast simulation : PGS4 and more

* A few concluding remarks and homework...

Simulation in General

- To simulate: To model, replicate, duplicate the behavior, appearance or properties of. (from wiktionary.org)
 - Simplest/most common simulators in engineering/physics:
 - Put together mathematical models of components => obtain a set of equations => solve equations exactly or through numerical recipes.
 - * Consider SPICE (Simulation Program with Integrated Circuit Emphasis) : the indispensable tool of circuit designers since 1973.
 - * I-V characteristics of circuit components => differential algebraic equations => solved using Newton's method & sparse matrix techniques, etc.

Horse Simulator - teaches you how not to fall

Sec.Order High-Pass Filter
Vin 1 0 AC 12V
CF 1 2 3.0uF
Rf 2 3 4.0
Lf 3 0 150uH
.AC DEC 20 10Hz 10MEG
. PROBE
• END

SPICE - teaches you how not to burn your components

V. Erkcan Özcan, Bogaziçi University

 $\langle \! \rangle$

Monte Carlo Simulation

- Monte Carlo simulation:
 - Instead of deterministic solutions, use repeated random samplings to compute results.
 - * Name suggested by Nick Metropolis, who was inspired by Stan Ulam's uncle, who would borrow money from relatives to go to Monte Carlo.
 - * "Invented" to solve nuclear fission problems in the late 1940s (Fermi, Metropolis, Ulam, von Neumann,...)
 - * Start with randomly located neutrons moving in random directions, than move them on the model of the proposed reactor, randomly scattering.
- In particle physics, "simulation" is synonymous with Monte Carlo.

FERMIAC - Analog "computer" used for MC simulations at Los Alamos

CC) http://www.flickr.com/

http://jackman.stanford.edu/mcmc/metropolisl.pdf

V. Erkcan Özcan, Bogaziçi University

4

ISTAPP 'I I, Istanbul

Numerical Integration

- * Compute: $I = \int_0^1 f(x) dx$
- * Simplest numerical method: $I \approx \sum_{i=1}^{n} \frac{1}{n} f(\frac{i}{n})$
- * d-dimensional: $I = \int_{[0,1]^d} f(x_1, x_2, ..., x_d) dx_1 dx_2 ... dx_d$

- * We need to evaluate the function $N = n^d$ times. Furthermore, one can show that the "error" will be: $\mathcal{O}(N^{-2/d})$
- Solution: Randomly (uniform pdf) choose N points, X_i, in the ddimensional space.

* Then:
$$I \approx \sum_{i=1}^{N} \frac{1}{N} f(\mathbf{x_i})$$

* "Statistical" error scales like, $\frac{1}{\sqrt{N}}$, independent of d.

V. Erkcan Ozcan, Bogaziçi University

 $\langle \bullet \rangle$

http://arxiv.org/abs/hep-ph/0006269/

ISTAPP '11, Istanbul

A Simple Example

* Compute : $I = \int_0^1 \frac{dx}{\sqrt{x}}$

 $\langle \! \rangle$

* A single "experiment" implemented as a single line in ROOT:

root [0] float s=0; int n=10000; for (int i=0; i<n; ++i)
s+=1/sqrt(gRandom->Rndm()); cout << s/n << endl;
2.02832</pre>

* What is the "error" on our computation?

% Find using Monte Carlo technique! Perform experiments and see distribution of results. THIF h("h","h",1000,0,5.); int nexp = 1000; // number of experiments int n=5000; // number of iterations per experiment for (unsigned int j=0; j<nexp; j++) { float s=0; for (int i=0; i<n; ++i) s+=1/sqrt(gRandom->Rndm()); h.Fill(s/n); } h.Draw();

V. Erkcan Özcan, Bogaziçi University

ISTAPP '11, Istanbul

Story of an Experiment @ CERN

* CERN 2m Bubble Chamber

 $\langle \bullet \rangle$

- * Source: 4.2 GeV K⁻ beam
- * Ran between 1965–1977

V. Erkcan Özcan, Bogaziçi University

 $\langle \bullet \rangle$

Photos from Henk Tiecke

Press the shutter button, make shots, select interesting ones

V. Erkcan Özcan, Bogaziçi University

ISTAPP 'I I, Istanbul

Record and digitise the data

0 0 1 1 2 2 3 3 4 5 5 6 6	0 0 3 4 1 1 2 2 3 3 4 4 5 5 5 5 5 5 5 5 7 [0 0 1 1 2 2 3 3 4 4 5 5 6 6 6 6 7 7	0 0 10 1 1 1 2 2 3 3 4 4 5 5 5 5 6 6 7 7	0:1 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1	0 0 0 1 1 1 2 2 3 3 4 4 5 5 5 6 7 7 7	0 15 1 2 3 4 5 6 7	0 1 2 2 3 3 4 4 5 5 5 6 6 6 7 7	0 13 1 2 3 4 5 6 7	0 20 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 7 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 25 1 2 3 4 5 6 7	0 26 1 2 3 4 5 6 7	0 7 6 7	0 2 3 4 5 5 7		±1	2	× 3	læ	6 1 Foto nummer	+ 4	12 E	13 EV	Aontal	15 usuals		-XX	X 7 18 20 2 vo Zone	X 7 18 20 2 2 Vo Zone a	X 6 X 7 18 20 21 21 X 7 18 20 21 21 X 7 2 VO Zone a. 045	X 0 X 7 18 20 21 22 2 X 7 18 20 21 22 2 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7	X 7 18 20 21 22 23 2 X 7 18 20 21 22 23 2 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7	X 6 X 7 18 20 21 22 23 24 X 7 18 20 21 22 23 24 X 7 2 VO Zone a. doi: 5 XO	$x = \frac{18}{20} \frac{21}{21} \frac{22}{23} \frac{24}{25} \frac{25}{24} \frac{40}{25} \frac{40}{25} \frac{40}{25} \frac{40}{25} \frac{10}{25} $	X 0 X 7 18 20 21 22 23 24 25 26 H 2 VO Zone a days on 101 295	X 6 X 7 18 20 21 22 23 24 25 26 77 18 20 21 22 23 24 < 50 77 18 20 21 22 23 24 0 × 00 4 0 + 00 19 5 20 6 10 1295 10 1295	X 0 X 0 X 7 18 20 21 22 23 24 25 26 77 18 20 21 22 23 24 4 5 70 14 10 25 25 26 14 10 12 14 10 14 14 10 1	x = x + y + y + y + y + y + y + y + y + y +
7 7 7 7 7 7 7 7 7 7 7	i de contrate de la contra		1.11	11	1		1	1	ľ	2			ł	1	1	1	1																									

V. Erkcan Özcan, Bogaziçi University

 $\langle \bullet \rangle$

	1	A M	5	1 1	LV	en	2.73	-33.44 -31.78	0.0	010	0.012	0.103					
TRA	CK -	R	URE	CCOE	P n C	DIP	PHI	THETA		RRO	RS	LENGTH	+-	SAGITT	A PCOSL RESIDL	MAG.F HIST	ICN IZAT MEAS.ION
1	A1 -	Ļ		WWW	4224	E E	3153	IVI	67	3	1	-27.57	0.05	120	4224	-17.25	10 10 10
			0.4	938	4225	8	3153	1.1.1	67	3	1			0.00			
2	A2	-		MMM	274	-217	357	402	1	3	1	40.88	0.05			in the second	N.
3	A3	-		WWW	901	447	290	529	5	1	0	11.36	0.05	- 3	1	A BAR A	
			0.1	390	911	448	289		1.5	2	2					And and a second second	and the second s
			0.4	930	312	440	209	62	15	2	1	37 30	0 05		1		
	A-4		0.1	306	310	0	72	20	6	6	4	51.50	0.05		,		
			0.4	938	324	q	77		12	10	7					100	1 arresteres
5	A.5	+		WWW	863	-423	93	423	6	2	1	41.91	0.05	1			28 00000
			0.1	396	868	-422	54		17	3	2			- 6850			200
			0.4	938	865	-422	94		19	3	2			- 685			113
			0.9	383	875	-422	94		25	4	2						
6	M2	+		WWW	1013	301	6153	338	5	1	0	80.82	0.05	4		Ve	
			0.1	396	1017	300	6153		13	3	2				0.10	-	
			0.9	383	1028	300	6154		17	4	3			120			+ man
7	M3	-		HWW	326	30	6074	223	2	2	0	42.62	0.05	- 3		31	L Marcallan
			0.1	396	333	31	6071		5	7	5				Carina	ALL A	L Consister
					MEV/C	N	ILLI-R	ND .				СM		NI	ACCOUNTS OF	A COM	
***	R6	CAN	DICA	TE - E	RR 100	ETC .A	1							1			
	1.0	CAN	DILA	1 C - C	NR 40	cit.	12 114	# 5						-			
														Linese	100	ALC: NO	
IT	NO	PT 1	Nf	DTR 3	т	YPE 51	010	HYP	2	т	ARG 0	.0	ERRCE	S. N	ONE NO	INE	CHISC O.
TRA	Ск	МЛ	SS	CODE	BU	в	PU DI	PU PH	ιu	D	PUD	DP U DP	HU	PF	DIP F	PHIF	DP F DD
MO	0	1.1	154 1	UUU	F 1.7	1.3	54 -0.7	235 2.9	91	0.0	0.	0 0.0	1	1.354	-0.236	2.992	0.017 0.0
M2	+	0.9	383 1	W W W	F. 1.9	1.0	28 0.3	300 6.14	54	0.0	17 0.	0.04 0.0	03	1.034	0.300	6.154	0.015 0.0
М3	-	0.1	396 1	W W W	F 1.2	0.3	33 0.0	031 6.0	71	0.0	05 0.	007 0.0	105	0.330	0.033	6.072	0.003 0.00

KO PI- BLOCK	• TWEE RESONANTIES 6 (29/09/65) IDEOGRAM 1 EF	FEKTIEVE MASSA KOPI	
XLOA	386	D 1	• TT 1
TEST	0	Kecora	ing on Hard
158	x		0
105	x2	D.	
102	XX		
99	XX		
90	AA YX		
00	ŶX		
87	XX		
84	XX		
81	xx		
78	XX		
72			
76	ů.		
4.6	ŶŶ		
63	XX		2.7~
60	XXX		the second secon
37	XXX		
94	XXX		
71	XXXX		
40	AXAA		NA -
42	XXXX		The is the second
19	XXXX		
36	XXXX	2	
33	XXXX	X	
30	XXXX1		
27	XXXXX	XX	
24	244444	1 177	
10	¥XXXXX2	X XXX2	A Contraction
75	XXXXXXXXX1 1	X2XXXXX	
72	XXXXXXXXXXX 2 21	1 2XXXXXXX 2 11 2 1	
9	YXXXXXXXXXXXX 2 1X XXX	1 XX XXXXXXXX1 X1 XX X2X X X X	
6	1 1 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12111111111111111111111111111111111111	
	1 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	***************************************	
2104	11		
CON-	22500621111 1 11	1 11113211 1 1 1 1 1	
TENTS	1 43439131640873138686714109	759 1419495775972176906089659551622025223	the second
	.0		
	0		
CHAN.	12145678901214567890101454789	2345678901234567890123456789 123456789	and the second
403	1594301010159430101011594301010	Ferrer of Forger on of Forger of Forger of o	

V. Erkcan Özcan, Bogaziçi University

.

ISTAPP 'I I, Istanbul

.

.

Summary of the Story

V. Erkcan Özcan, Bogaziçi University

12

4-Initial & Final-state radiation

5-Multiple interactions + ISR/FSR

6-All outgoing partons & beam remnants, color connected

7-Hadronisation, fragmentation & decays of hadrons

Available Event Generation Tools

 \Rightarrow * Luckily you don't need to do all the steps manually.

- * Most often one does a matrix-element level simulation of the physics process first.
 - Generic ME calculators that can compute any 2->n process (n upto 6-7) at the tree level.
 Examples: CompHEP/CalcHEP, MadGraph, etc.
 - Specialized (only a set of predetermined physics processes) ME simulators fast tree-level or beyond tree level.
 Examples: MC@NLO, PowHEG, Alpgen, etc., but also Pythia & Herwig.
- * Thanks to the Les Houches Event (LHE) format, the output of the above can be fed into programs that simulate all/most of the "rest".
 - * Some common examples are Pythia and Herwig.
 - Occasionally you might need special treatment though.
 Examples: for QED radiative effects PHOTOS, EvtGen for the decays of B-mesons, etc.
- * The names and the variety of functions can sometimes be quite confusing.

V. Erkcan Özcan, Bogaziçi University

ISTAPP '11, Istanbul

Pythia

* Pythia does ME, ISR/FSR, multiple interactions, hadronization, fragmentation, ie. everything you want from an event generator.

Pythia6 running on an OLPC XO!

* But if you need to enter new processes, do higher-order corrections, depend on spin statistics, etc., then better consider interfacing it with outer programs.

* Important: Parton shower matching. Pythia adds new partons, you need to make sure no duplication happens.

Disclaimer: The main alternative to Pythia is Herwig, for which most of what is in this presentation also apply. The choice of Pythia as the "representative" has been done purely due to historical reasons.

V. Erkcan Özcan, Bogaziçi University

No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No	Subprocess	No	Subprocess
Hard OCD processes:	$36 f_{\gamma \rightarrow f_{\gamma}} W^{\pm}$	New gauge bosons:	Higgs pairs:	Compositeness:	210	$\overline{U}_{1} \rightarrow \overline{U}_{1}\overline{U}_{1}^{*} +$	250	Le - der Va
11 66 - 66	69	141 66	207 f.T H=10	146	211	17	251	for - Dunia
19 67 67	70 ~W= ~ 70W=	141 $I_1I_1 \rightarrow \gamma/L/L$	000 (7 HENO	147 dg - d'	211	$t_1 t_j \rightarrow \tau_1 \nu_{\tau} + \tau_2 \tau_{\tau}$	252	fig - quaga
$12 l_1 l_1 \rightarrow l_k l_k$	Prompt photons	142 $l_i l_j \rightarrow W$	296 $h_{1j} \rightarrow H^-H^-$	148	212	$\tau_i \tau_j \rightarrow \tau_2 \nu_r +$	202	La jon
13 $I_1I_1 \rightarrow gg$	Prompt photons:	144 $I_i I_j \rightarrow R$	299 $f_i f_i \rightarrow A^* h^*$	145 ug → u	213	$f_i f_i \rightarrow \nu_\ell \nu_\ell$	200	$rig \rightarrow q_{LR}\chi_4$
$28 I_ig \rightarrow I_ig$	14 $f_1f_2 \rightarrow g\gamma$	Heavy SM Higgs:	$300 f_i f_i \rightarrow \Lambda^o H^o$	$16i q_i q_j \rightarrow d q_i$	214	$f_i f_i \rightarrow \bar{\nu}_{\tau} \bar{\nu}_{\tau}^*$	201	$r_{ig} \rightarrow q_{jL} \chi_1$
$53 \text{ gg} \rightarrow t_k t_k$	18 $t_i t_i \rightarrow \gamma \gamma$	$5 Z^{\circ}Z^{\circ} \rightarrow h^{\circ}$	$301 f_i f_i \rightarrow H^+ H^-$	$100 q_1q_1 \rightarrow u q_k$	216	$f_i f_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_1$	200	$r_{ig} \rightarrow q_{jL}\chi_2$
$68 \text{ gg} \rightarrow \text{gg}$	29 fig \rightarrow fr γ	8 $W^+W^- \rightarrow h^0$	Leptoquarks:	100 $q_i q_i \rightarrow e^- e^-$	217	$f_i f_i \rightarrow \tilde{\chi}_2 \tilde{\chi}_2$	208	$i_{ig} \rightarrow q_{iLg}$
Soft QCD processes:	114 $gg \rightarrow \gamma\gamma$	71 $Z_L^o Z_L^o \rightarrow Z_L^o Z_L^o$	145 $q_i \ell_j \rightarrow L_Q$	165 $f_i f_i (\rightarrow \gamma^* / Z^*) \rightarrow f_k f_k$	218	$f_i f_i \rightarrow \tilde{\chi}_3 \tilde{\chi}_3$	259	tig → qiRg
91 elastic scattering	115 $gg \rightarrow g\gamma$	72 $Z_L^o Z_L^o \rightarrow W_L^+ W_L^-$	162 $qg \rightarrow \ell L_Q$	$166 f_i f_j (\rightarrow W^{\sim}) \rightarrow f_k f_l$	219	fili → X × X ×	261	$t_i t_i \rightarrow t_1 t_1$
92 single diffraction (XB)	Deeply Inel. Scatt.:	73 $Z_L^0 W_L^{\pm} \rightarrow Z_L^0 W_{L_1}^{\pm}$	163 $gg \rightarrow LQLQ$	Extra Dimensions:	220	$f_1 \bar{f}_1 \rightarrow \bar{\chi}_1 \bar{\chi}_2$	262	$f_if_i \rightarrow t_2t_2$
93 single diffraction (AX)	$10 f_i f_j \rightarrow f_k f_l$	76 $W_L^+W_L^- \rightarrow Z_L^0Z_L^0$	164 $q_i \overline{q}_i \rightarrow L_Q \overline{L}_Q$	$391 \text{ff} \rightarrow \text{G}^*$	221	$f_1 \overline{f}_1 \rightarrow \overline{\chi}_1 \overline{\chi}_2$	263	$f_i f_i \rightarrow t_1 t_2 +$
94 double diffraction	99 $\gamma^* q \rightarrow q$	77 $W_L^{\pm}W_L^{\pm} \rightarrow W_L^{\pm}W_L^{\pm}$	Technicolor:	$392 \text{ gg} \rightarrow \text{G}^*$	222	$f_{1}\overline{f}_{1} \rightarrow \tilde{\chi}_{1}\tilde{\chi}_{4}$	264	$gg \rightarrow t_1 t_1$
95 low-p_ production	Photon-induced:	BSM Neutral Higgs:	149 gg $\rightarrow \eta_{1c}$	$393 q\bar{q} \rightarrow gG^*$	223	$f_{i}^{\overline{d}} \rightarrow \tilde{Y}_{2}\tilde{Y}_{2}$	265	$gg \rightarrow t_2 t_2$
Open heavy flavour:	33 $f_i \gamma \rightarrow f_i g$	151 $f_i \bar{f}_i \rightarrow H^0$	191 $f_i f_i \rightarrow \rho_{1c}^0$	$394 qg \rightarrow qG^*$	224	EL - P.P.	271	$f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jL}$
(also fourth generation)	34 $f_i \gamma \rightarrow f_i \gamma$	152 $gg \rightarrow H^{\circ}$	192 $f_i \bar{f}_i \rightarrow \rho_i^+$	$395 \text{ gg} \rightarrow \text{gG}^*$	225	17 - 5.5.	272	$f_i f_j \rightarrow \tilde{q}_{iR} \tilde{q}_{jR}$
81 $f_i \overline{f}_i \rightarrow Q_k \overline{Q}_k$	54 $g\gamma \rightarrow f_k f_k$	153 $\gamma \gamma \rightarrow H^0$	193 $f_i \bar{f}_i \rightarrow \omega_{ij}^0$	Left-right symmetry:	226	11 × 13.44	273	$f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jR} +$
82 $gg \rightarrow Q_k \overline{Q}_k$	58 $\gamma \gamma \rightarrow f_k f_k$	171 $f_i \tilde{f}_i \rightarrow Z^0 H^0$	194 $f_{1}\overline{f}_{1} \rightarrow f_{2}\overline{f}_{1}$	341 $\ell_i \ell_j \rightarrow H_L^{\pm\pm}$	220	$\chi_1 \chi_1 = \chi_1 \chi_1$	274	$f_i f_j \rightarrow \bar{q}_{iL} \bar{q}_{jL}$
83 $q_i f_j \rightarrow Q_k f_i$	131 $f_i \gamma_T^* \rightarrow f_{ig}$	172 $f_i f_j \rightarrow W^{\pm}H^0$	195 $67 \rightarrow 67$	342 $\ell_i \ell_j \rightarrow H_R^{\pm\pm}$	221	$I_1I_1 \rightarrow \chi_2 \chi_2$	275	$f_i f_j \rightarrow \bar{q}_i R \bar{q}_j R$
84 $g\gamma \rightarrow Q_{k}Q_{k}$	132 $f_i \gamma_L^* \rightarrow f_i g$	173 $f_i f_j \rightarrow f_i f_j H^0$	361 $f_{-} \rightarrow W^+W^-$	343 $\ell_i^{\pm} \gamma \rightarrow H_L^{\pm\pm} e^{\mp}$	228	Infi $\rightarrow \chi_1^- \chi_2$	276	$f_i \bar{f}_j \rightarrow \bar{q}_{iL} \bar{q}_j^* R^+$
85 $\gamma\gamma \rightarrow F_kF_k$	133 $f_i\gamma_T \rightarrow f_i\gamma$	174 $f_i f_j \rightarrow f_k f_l H^0$	369 57 _ W±==	344 $\ell_i^{\pm} \gamma \rightarrow H_R^{\pm\pm} e^{\mp}$	229	$f_i f_j \rightarrow \hat{\chi}_1 \hat{\chi}_1^{-}$	277	$f_i \bar{f}_i \rightarrow \bar{q}_{jL} \bar{q}_{jL}^*$
Closed heavy flavour:	134 $f_i \gamma_L^* \rightarrow f_i \gamma$	181 $gg \rightarrow Q_{\mu}\overline{Q}, H^{0}$	202 111 - WL *te	345 $\ell_i^{\pm} \gamma \rightarrow H_L^{\pm\pm} \mu^{\mp}$	230	$f_i f_j \rightarrow \bar{\chi}_2 \bar{\chi}_1^n$	278	$f_i \overline{f}_i \rightarrow \overline{q}_{i R} \overline{q}_{i R}$
86 $gg \rightarrow J/\psi g$	135 $g\gamma_{\pm}^* \rightarrow f_i f_i$	182 $q_1\overline{q}_2 \rightarrow Q_1\overline{Q}_1$ H ⁰	363 $I_{i}I_{i} \rightarrow \pi_{ic}\pi_{ic}$	346 $\ell_i^{\pm} \gamma \rightarrow H_R^{\pm\pm} \mu^{\mp}$	231	$f_i f_j \rightarrow \hat{\chi}_3 \hat{\chi}_1^x$	279	$gg \rightarrow \bar{q}_{1L}\bar{q}_{1L}^*L$
87 $gg \rightarrow \chi_{0r}g$	136 $g\gamma_i^* \rightarrow f_i \bar{f}_i$	183 $f.\bar{f}. \rightarrow \sigma H^0$	364 $t_i t_i \rightarrow \gamma \pi_{tc}$	347 $\ell_i^{\pm} \gamma \rightarrow H_L^{\pm\pm} \tau^{\mp}$	232	$f_i f_j \rightarrow \tilde{\chi}_i \tilde{\chi}_1^{\pm}$	280	$gg \rightarrow \tilde{q}_{iR}\tilde{q}_{iR}$
88 $gg \rightarrow \chi_{1e}g$	137 $2i2i \rightarrow f_{i}\bar{f}_{i}$	184 Cr - CH ⁰	365 $f_i f_i \rightarrow \gamma \pi \tau_c$	348 $\ell_i^{\pm} \gamma \rightarrow H_R^{\pm\pm} \tau^{\mp}$	233	$f_i \tilde{f}_j \rightarrow \tilde{\chi}_1 \tilde{\chi}_2^{\pm}$	281	$bq_i \rightarrow \tilde{b}_1 \tilde{q}_1 r$
89 gg $\rightarrow \chi_{2}$ g	138 $222 \rightarrow 6\overline{6}$	185 gg - gH ⁰	$366 f_i f_i \rightarrow Z^o \pi^o_{ic}$	349 $f_i f_i \rightarrow H_L^{++} H_L^{}$	234	$f_i \overline{f}_j \rightarrow \hat{\chi}_2 \hat{\chi}_2^{\pm}$	282	$ba_{i} \rightarrow \bar{b}a\bar{a}_{i}a$
104 $gg \rightarrow y_{0r}$	139 $222 \rightarrow 6\overline{6}$	156 EE - A ⁰	367 $f_i f_i \rightarrow Z^o \pi_{tc}$	350 $f_1f_2 \rightarrow H_{12}^{++}H_{12}^{}$	235	$f_i \tilde{f}_j \rightarrow \tilde{\chi}_3 \tilde{\chi}_2^{\pm}$	283	ba - b a at
105 gg $\rightarrow \chi_{3c}$	140 a:a: → f.T.	157 mm - A ⁰	368 $f_i f_i \rightarrow W^{\pm} \pi_{tc}^{\pm}$	351 $f_i f_i \rightarrow f_k f_l H_l^{\pm 2}$	236	$f_i \tilde{f}_j \rightarrow \tilde{\chi}_i \tilde{\chi}_2^{\pm}$	284	ba - bat
106 $gg \rightarrow J/\psi\gamma$	80 0.0 - 0.7	158 pp - A ⁰	370 $f_i f_j \rightarrow W_L^{\pm} Z_L^0$	352 $f_1 f_1 \rightarrow f_2 f_1 H_B^{\pm \pm}$	237	$f_{1}f_{1} \rightarrow \tilde{g}\tilde{\chi}_{1}$	201	$b\pi \rightarrow b_1 q_1 r$
107 $g\gamma \rightarrow J/\psi g$	Light CM Illinger	176 (7	371 $f_i \bar{f}_j \rightarrow W_L^{\pm} \pi_{tc}^0$	353 $f_{e}f_{e} \rightarrow Z_{e}^{0}$	238	$f_{1}\bar{f}_{1} \rightarrow \bar{g}\bar{\chi}_{2}$	200	$\mathrm{Dq}_{i} \rightarrow \mathrm{D}_{2}\mathrm{q}_{i}R$
108 $\gamma\gamma \rightarrow J/\psi\gamma$	2 CC 10	110 $1(1) \rightarrow 5^{-}A$	372 $f_i f_j \rightarrow \pi^{\pm}_{i*} Z_L^0$	354 $f, \bar{f}_{+} \rightarrow W^{\pm}$	239	f.f> Pro	286	$bq_i \rightarrow b_1q_i R +$
W/Z production:	$3 I_1 I_1 \rightarrow I_1$	170 ff ff A	373 $f_i \bar{f}_j \rightarrow \pi^{\pm}_{ic} \pi^0_{bc}$	SUSY:	240	1.1. → 2×.	287	$f_i f_i \rightarrow b_1 b_1$
1 $6\overline{L} \rightarrow \gamma^*/Z^0$	$24 I_1 I_1 \rightarrow Z \Pi$	118 $I(I) \rightarrow I(I)A$ 120 $I(I) \rightarrow I(I)A$	374 $f_1 \bar{f}_1 \rightarrow \gamma \pi_{1c}^{\pm}$	201 $EE \rightarrow EE^{*}$	241	1.1 #S±	288	$f_i f_i \rightarrow b_2 b_2^-$
2 $f_{i}\bar{f}_{i} \rightarrow W^{\pm}$	20 $I_i I_j \rightarrow W^- h^-$	100 1(1) - 1k1/A	375 $f_{i}\overline{f}_{i} \rightarrow Z^{0}\pi^{\pm}$	202 6.6 - 6-6	2.42	1.1 22ª	289	$gg \rightarrow b_1 b_1$
22 E.E - 7070	$32 I_1 g \rightarrow I_1 h^-$	180 gg $\rightarrow Q_A Q_B A^{-1}$	376 $f_{*}^{-1} \rightarrow W^{\pm} \pi^{0}$	202 111 - CRCR	242	(7 35	290	$gg \rightarrow b_2 b_2$
09 67 . 7 ⁰ W [±]	$102 \text{ gg} \rightarrow h^{-1}$	$187 q_i q_i \rightarrow Q_k Q_k \Lambda^{\circ}$	377 f.f. → W#="	203 $111 \rightarrow 010R +$	243	int - gg	291	$bb \rightarrow b_1 b_1$
23 $111 \rightarrow 2$ W	$103 \gamma \gamma \rightarrow h^{-1}$	188 $f_i f_i \rightarrow g A^{\vee}$	381 0.0> 0.0.	$201 t_{11} \rightarrow \mu_L \mu_L$	240	88 - 88	292	$bb \rightarrow b_2 b_2$
25 $I_1I_1 \rightarrow W^-W^-$	110 $f_i f_i \rightarrow \gamma h^0$	189 fig \rightarrow fiA [*]	382 0.0 - 0.0	$205 t_i t_i \rightarrow \mu_R \mu_R$	240	$ag \rightarrow q_{LX}$	293	$bb \rightarrow \tilde{b}_1 \tilde{b}_2$
15 $f_1f_1 \rightarrow gZ^-$	111 $f_i f_i \rightarrow gh^{\circ}$	190 $gg \rightarrow gA^{\circ}$	$383 0.7. \rightarrow cr$	206 $f_i f_i \rightarrow \tilde{\mu}_L \tilde{\mu}_R +$	240	$ng \rightarrow q_{iR}\chi_1$	294	$bg \rightarrow \tilde{b}_1 \tilde{g}$
16 $L_i \Gamma_j \rightarrow g W^-$	112 $f_i g \rightarrow f_i h^{\circ}$	Charged Higgs:	384 f.g \rightarrow f.g	207 $f_i f_i \rightarrow \bar{\tau}_1 \bar{\tau}_1$	248	$q_{1L}\chi_2$	295	$bg \rightarrow \bar{b}_2 \bar{g}$
$30 f_ig \rightarrow f_iZ^{\prime\prime}$	113 $gg \rightarrow gh^{\circ}$	143 $f_i f_j \rightarrow H^+$	385 07 - 0.0	208 $f_i f_i \rightarrow \tilde{\tau}_2 \tilde{\tau}_2^*$	219	$q_1 R \rightarrow q_1 R \chi_2$	296	$b\bar{b} \rightarrow \bar{b}_1 \bar{b}_2^+ +$
31 $f_i g \rightarrow f_k W^{\perp}$	121 $gg \rightarrow Q_k Q_k h^\circ$	161 $f_i g \rightarrow f_k H^+$	386 07 - 07	209 $f_i f_i \rightarrow \tilde{\tau}_1 \tilde{\tau}_2^* +$			-	
19 $f_i f_i \rightarrow \gamma Z^{\circ}$	122 $q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k h^0$	401 $gg \rightarrow tbH^+$	387 17 -0.0					
20 $f_i f_j \rightarrow \gamma W^{\pm}$	123 $f_i f_j \rightarrow f_i f_j h^0$	402 $q\bar{q} \rightarrow \bar{t}bH^+$						
35 $f_i \gamma \rightarrow f_i Z^0$	124 $f_i f_i \rightarrow f_k f_i h^0$		$335 88 \rightarrow Q_k Q_k$					

Available processes in Pythia6.

Step 2 - Detector Simulation

- * Geometry of the system * Materials used
- * Particles of interest
- * Generation of test events or particles
- * Interactions of particles with matter and EM fields

- * Response to detectors
- * Records of events and tracks
- * Visualisation of the system and the tracks
- * Analysis of the full simulation at whatever detail you like

Geant4

* Stands for "Geometry and Tracking"

- * Don't let the name confuse you: Event reconstruction (including the tracking of charged particles) has nothing to do with Geant.
- * Earlier versions developed at CERN with Fortran, now it is being written in C++ by an international collaboration, aptly called Geant4.
- * It is the standard in modern HEP experiments, but its penetration to other fields is also on the rise.
 - * Some experiments using Geant4: ATLAS, CMS, LHCb, BaBar, Borexino, MINOS, ...
 - * Space science, biomedical search, etc.

 \bigotimes

How does G4 work?

- * Define the initial particles and place them (use the interface to an event generator, or place a radioactive source or a particle gun)
- * Within the defined volume, move all the particles in small steps.
 - * Define the step size according to the cross-sections of the relevant processes and the dimensions of the used materials.
 - * At each step engage the processes: Generate new particles, absorb or create new particles, etc.
 - * Loop until no particles are left within a predefined volume.

V. Erkcan Özcan, Bogaziçi University

 $\langle \bullet \rangle$

ISTAPP 'I I, Istanbul

Processes in GEANT

- * <u>Photons</u>: Photoelectric effect, Compton & Rayleigh scattering, electron/muon pair production.
- Electrons: e-ionisation/energy loss (Moller, Bhabha scatterings, Berger-Stelzer dE/dx etc.), bremsstrahlung, e+e- annihilation, syncrotron radiation.
- Muons: μ ionisation/energy loss,
 bremsstrahlung, e+e- pair production.
- * <u>Hadrons/ions</u>: ionisation/energy loss
- * Multiple scattering, transition radiation, scintillation, Čerenkov radiation, delta rays...

* This is just the list for EM interactions!

- * Hadronic interactions
- * Particle decays
- * Optical processes (λ_{photon} » d_{atom-atom})
- * Know what is relevant to your energy-scale!

http://geant4.web.cern.ch/geant4/G4UsersDocuments/UsersGuides/ ForApplicationDeveloper/html/TrackingAndPhysics/physicsProcess.html

http://geant4.web.cern.ch/geant4/G4UsersDocuments/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html

V. Erkcan Özcan, Bogaziçi University

Interaction of Particles with Matter

K. Nakamura et al., JPG 37, 075021 (2010)

http://pdg.lbl.gov/2010/reviews/ rpp2010-rev-passage-particlesmatter.pdf

- * What do we mean by the "relevant energy scale"?
- * Answer: Read the "Passage of Particles Through Matter" in the Particle Physics Booklet!
 - * Actually, while at it, read the rest of the PDG too excellent bedtime book!

After Geant

* After we get the response of the active detector elements to our particles, we are still not done:

- * Consider a scintillator. After the "creation" of the photons due to our muon, we need to:
 - * carry the photons through a light guide
 - * convert them into electrical charges with a PMT
 - * convert the charges (analog data) into digital data
- * All these steps need to be simulated as well. They will need the characteristics of your devices, ie. the dark currents and the quantum efficiency of the PMTs, response times of the components, etc.

* And of course, we need to reconstruct the event and do the analysis!

 $\langle \bullet \rangle$

Quick and Dirty Way

- * Geant is extremely detailed, but also extremely slow.
 - For an LHC detector, simulation of a single hadronic tt event takes up to 20 minutes!, and depending on the analysis we need millions/billions of events.
 - * Theorists come up with many models and do not have the detailed detector descriptions and reconstruction algorithms of the experimentalists.
- * Solution: Fast simulation (as opposed to Geant "full" simulation)
 - * Can parameterize the slowest parts of Geant simulation (like the calorimeter response) and use Geant on the rest of the simulation.
 - * Parameterize the whole response of the detector/reconstruction etc.
 - * Examples: AcerDet, ATLFast, FAMOS, PGS, Delphes...

V. Erkcan Özcan, Bogaziçi University

 \diamond

ISTAPP 'I I, Istanbul

PGS4

* Started life in 1998 (under the name SHW) during the Tevatron Run2 SUSY/Higgs Workshop. Being maintained by: John Conway (UC Davis).

- * Not only for Tevatron dedectors it can be parameterized for any generic cylindrical HEP detector.
- * Latest version PGS4 090401.

* Simple, fast, quite standard for feasibility studies. Fits the meaning of its name: "pretty good simulator".

http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm

V. Erkcan Özcan, Bogaziçi University

PGS Source Code

- * Written with Fortran, compileable with g77 or gfortran, only dependence is the STDHEP library.
- * <u>Kernel library</u> : Essentially all the functionality of PGS is in a library, as individual fortran functions.
- * <u>Driver code</u> : Calls the library functions one by one. Once the process is complete, it can also call some analysis code written by the enduser.
 - * The driver that comes with Madgraph (pythiapgs_V2.1.5.tar.gz) has been prepared for the LHC Olympics, and can nowadays be considered "the standard". It applies the minimum cuts of the detector trigger and provides output in the LHCO format.

What do we expect from PGS?

 $\langle \bullet \rangle$

Detector acceptance
Detector efficiency
Mom./energy resolution
Reconstruction of jets/ objects

"Measured" event in LHCO format

PGS

Data analysis (ROOT etc.)

So how does PGS work?

- * Process all final state particles if they are within the acceptance of the detector components:
 - * If charged particle, put a straight track (no bending in the Bfield), but take the track sagitta resolution into account.
 - * Calorimeters segmented in $\eta \& \Phi$. Find which segment each particle is pointing to and deposit its energy into that segment.
 - * electrons/photons: almost all energy to EM calorimeter.
 - * hadrons: most energy to hadronic calorimeter.
 - * muons: minimum ionisation.
 - * Energy resolutions:

 $\Delta E^{em}/E^{em} = a \oplus b/\sqrt{E^{em}}$

Warning! This is not such a good model for the LHC detectors!

$$\Delta E^{had}/E^{had} = b/\sqrt{E^{had}}$$

What do these formulas mean? Read your PDG!

V. Erkcan Özcan, Bogaziçi University

 \diamond

JETS

QCD: No color singlets, no free quarks...

- Hadronisation/fragmentation: "jet"s – many particles with small relative momenta with respect to each other.
- Cone or pair-wise jet reco algorithms.

About Jet Reconstruction

* <u>Cone-based algorithms</u>: Start with the highest-energy calorimeter cell above a minimum energy and draw a cone around it. Add in the energies of the other cells within that cone. Call the sum a jet. Then start over and repeat the procedure with the remaining cells.

* Pairwise combination algorithms (ktjet): Take pairs of cells/subjets. If their transverse momenta with respect to each other is smaller than their transverse momenta with respect to the beam axis by a predetermined factor, merge the pair into a subjet. Repeat this procedure until there are no remaining cells/subjets that can be merged.

Heavy-flavor jets in PGS

- * If the partons that initiate jets are c or b quarks, it is possible to "tag" them as such.
- * PGS checks where the jet originates, and then does a random tagging whose PDFs are taken from CDF performance, as a function of jet E_T & η.

V. Erkcan Özcan, Bogaziçi University

 $\langle \bullet \rangle$

30

ISTAPP 'I I, Istanbul

This ATLAS card file comes with Madgraph.

!	name of the parameter set	
!	number of eta cells in the calorime	eter
!	number of phi cells in the calorime	eter
!	eta width of calorimeter cells et	a < 5
101 !	phi width of calorimeter cells	
!	resolution of EM calorimeter (const	cant term)
!	resolution of EM calorimeter (*sqrt	(E) term)
!	resolution of hadronic calorimeter	(*sqrt(E) term)
!	missing ET resolution in the trigge	er
!	calorimeter cell edge crack fractio	n
- !	jet finding algorithm (cone veya kt	tjet)
!	calorimeter trigger cluster finding	seed threshold (GeV)
!	calorimeter trigger cluster finding	g shoulder threshold (GeV)
!	calorimeter kt cluster finder cone	size (delta R)
!	outer radius of the tracking detect	cor (m)
!	magnetic field strength (Tesla)	
!	sagitta resolution (m)	
!	track finding efficiency	
!	lowest track PT (GeV)	DCCL
!	tracking eta acceptance	PGS Input
!	electron/photon eta acceptance	
!	muon eta acceptance	Card
!	tau eta acceptance	UNI U
		<pre>! name of the parameter set ! number of eta cells in the caloring ! number of phi cells in the caloring ! eta width of calorimeter cells [et 101 ! phi width of calorimeter cells ! resolution of EM calorimeter (const ! resolution of EM calorimeter (*sqrt ! resolution of hadronic calorimeter ! missing ET resolution in the trigge ! calorimeter cell edge crack fractic ! jet finding algorithm (cone veya kt ! calorimeter trigger cluster finding ! calorimeter trigger cluster finding ! calorimeter kt cluster finder cone ! outer radius of the tracking detect ! magnetic field strength (Tesla) ! sagitta resolution (m) ! track finding efficiency ! lowest track PT (GeV) ! tracking eta acceptance ! muon eta acceptance ! tau eta acceptance</pre>

31

.

Warning! Hidden Parameters

- * Beyond those listed on the input card file, there are many more parameters hardcoded into PGS:
 - * A few are in the PGS library file (pgslib.f). For example the efficiency of the muon trigger: muon trig eff = 0.98
 - * Others are in the PGS driver file (pgs.f). For instance, the minimum trigger momenta in the LHCO driver: single_lepton_rectrig_threshold=30.0
 - * Occasionally same/similar parameter can appear in both places. For example, in the definition of the muon trigger inside the PGS library file, there is an intrinsic cut on the minimum PT of the muon: ... et_gen(ihep).ge.3.0 ...

* PGS's pure-ASCII-type output file format. Prepared initially for the LHC Olympics, but has recently become quite standard.

#	type	eta	phi	pt	jmass	#trk	btag	had/em	dum1	dum2
0		39	1043	*						
1	0	-1.350	3.341	26.11	0.00	0.0	0.0	0.00	0.0	0.0
2	1	-0.663	5.233	164.40	0.00	1.0	0.0	0.02	0.0	0.0
3	2	-0.589	4.675	147.62	0.11	-1.0	4.0	95.99	0.0	0.0
4	4	-0.629	4.998	308.94	85.25	12.0	2.0	0.33	0.0	0.0
5	4	-2.061	1.571	455.01	156.56	32.0	0.0	1.19	0.0	0.0
6	4	-1.954	2.699	24.07	2.38	32.0	0.0	11.60	0.0	0.0
7	4	1.149	5.756	6.23	1.93	2.0	0.0	3.73	0.0	0.0
8	6	0.000	3.521	28.86	0.00	0.0	0.0	0.00	0.0	0.0

http://vl.jthaler.net/olympicswiki/doku.php?id=lhc_olympics:data_file_format

* PGS's pure-ASCII-type output file format. Prepare for the LHC Olympics, but has recently become q event number 39; trigger word 1043

#	type eta	phi	pt	jmass	#trk k	otag	had/em		
0	39	1043	1						
- 1	0 -1.350	3.341	26.11	0.00	0.0	0.0	0.00	0.0	0.0
2	1 -0.663	5.233	164.40	0.00	1.0	0.0	0.02	0.0	0.0
3	2 -0.589	4.675	147.62	0.11	-1.0	4.0	95.99	0.0	0.0
4	4 -0.629	4.998	308.94	85.25	12.0	2.0	0.33	0.0	0.0
5	4 -2.061	1.571	455.01	156.56	32.0	0.0	1.19	0.0	0.0
6	4 -1.954	2.699	24.07	2.38	32.0	0.0	11.60	0.0	0.0
7	4 1.149	5.756	6.23	1.93	2.0	0.0	3.73	0.0	0.0
8	6 0.000	3.521	28.86	0.00	0.0	0.0	0.00	0.0	0.0

http://vl.jthaler.net/olympicswiki/doku.php?id=lhc_olympics:data_file_format

* PGS's pure-ASCII-type output file format. Prepare for the LHC Olympics, but has recently become q 0 = photon26.11 GeV $\eta = -1.350$ $\omega = 3.341$

	#	type	eta	phi	pt	jmass	#trk	btag	had/em	d	Ψ •
1	0	*	39	1043							
T	1	0	-1.350	3.341	26.11	0.00	0.0	0.0	0.00	0.0	0.0
	2	1	-0.663	5.233	164.40	0.00	1.0	0.0	0.02	0.0	0.0
	3	2	-0.589	4.675	147.62	0.11	-1.0	4.0	95.99	0.0	0.0
	4	4	-0.629	4.998	308.94	85.25	12.0	2.0	0.33	0.0	0.0
	5	4	-2.061	1.571	455.01	156.56	32.0	0.0	1.19	0.0	0.0
	6	4	-1.954	2.699	24.07	2.38	32.0	0.0	11.60	0.0	0.0
	7	4	1.149	5.756	6.23	1.93	2.0	0.0	3.73	0.0	0.0
+	8	6	0.000	3.521	28.86	0.00	0.0	0.0	0.00	0.0	0.0

http://vl.jthaler.net/olympicswiki/doku.php?id=lhc_olympics:data_file_format_

* PGS's pure-ASCII-type output file format. Prepared for the LHC Olympics, but has recently become qu

type = I #track = I positron 164.4 GeV

#	type	eta	phi	pt	jmass	#trk	btag	had/em		64.4	GeV
0		39	1043						/ `	•	
1	0	-1.350	3.341	26.11	0.00	0.0	0.0	0.00			_
2	1	-0.663	5.233	164.40	0.00	1.0	0.0	0.02	0.0	0.0	
3	2	-0.589	4.675	147.62	0.11	-1.0	4.0	95.99	0.0	0.0	
4	4	-0.629	4.998	308.94	85.25	12.0	2.0	0.33	0.0	0.0	,
5	4	-2.061	1.571	455.01	156.56	32.0	0.0	1.19	0.0	0.0	
6	4	-1.954	2.699	24.07	2.38	32.0	0.0	11.60	0.0	0.0	
7	4	1.149	5.756	6.23	1.93	2.0	0.0	3.73	0.0	0.0	
8	6	0.000	3.521	28.86	0.00	0.0	0.0	0.00	0.0	0.0	

http://vl.jthaler.net/olympicswiki/doku.php?id=lhc_olympics:data_file_format_

* PGS's pure-ASCII-type output file format. Prepared initially for the LHC Olympics, but has recently become quit μ^-

	#	type eta	a phi	pt	jmass	#trk	btag	had/em	9!	GeV energ	У
	0 1	3: 0 -1.35	9 1043 0 3.341	26.11	0.00	0.0	0.0	0.00		deposited around it	
	2	1 -0.66	3 5.233	164.40	0.00	1.0	0.0	0.02	.0		
	3	2 -0.58	9 4.675	147.62	0.11	-1.0	4.0	95.99	0.0	0.0	
	4	4 -0.62	9 4.998	308.94	85.25	12.0	2.0	0.33	0.0	0.0	
	5	4 -2.06	1 1.571	455.01	156.56	32.0	0.0	1.19	0.0	0.0	
	6	4 -1.95	4 2.699	24.07	2.38	32.0	0.0	11.60	0.0	0.0	
	7	4 1.14	9 5.756	6.23	1.93	2.0	0.0	3.73	0.0	0.0	
+	8	6 0.00	0 3.521	28.86	0.00	0.0	0.0	0.00	0.0	0.0	

http://vl.jthaler.net/olympicswiki/doku.php?id=lhc_olympics:data_file_format_

V. Erkcan Özcan, Bogaziçi University

close to jet #4;

* PGS's pure-ASCII-type output file format. Prepared initially for the LHC Olympics, but has recently become quite states

	#	type	eta	phi	pt	jmass	#trk	btag	had/em	b	-tagged jet of mass	
	0		39	1043						Ş	85.25 GeV	
	1	0	-1.350	3.341	26.11	0.00	0.0	0.0	0.00			
	2	1	-0.663	5.233	164.40	0.00	1.0	0.0	0.02	na	S IZ TRACKS	
	3	2	-0.589	4.675	147.62	0.11	-1.0	4.0	95.99	.0		-
Э	4	4	-0.629	4.998	308.94	85.25	12.0	2.0	0.33	0.0	0.0	
	5	4	-2.061	1.571	455.01	156.56	32.0	0.0	1.19	0.0	0.0	
	6	4	-1.954	2.699	24.07	2.38	32.0	0.0	11.60	0.0	0.0	
	7	4	1.149	5.756	6.23	1.93	2.0	0.0	3.73	0.0	0.0	
+	8	6	0.000	3.521	28.86	0.00	0.0	0.0	0.00	0.0	0.0	

http://vl.jthaler.net/olympicswiki/doku.php?id=lhc_olympics:data_file_format_

* PGS's pure-ASCII-type output file format. Prepared initially for the LHC Olympics, but has recently become quite standard.

	#	type	eta	phi	pt	jmass	#trk	btag	had/em	dy		
	0		39	1043						3 i	ets Not	e that
	1	0	-1.350	3.341	26.11	0.00	0.0	0.0	0.00	5,	Hadronic >	EM
	2	1	-0.663	5.233	164.40	0.00	1.0	0.0	0.02	Č		C
	3	2	-0.589	4.675	147.62	0.11	-1.0	4.0	95.99	/		
4	4	4	-0.629	4.998	308.94	85.25	12.0	2.0	0.33	0.0		
	5	4	-2.061	1.571	455.01	156.56	32.0	0.0	1.19	0.0	0.0	
	6	4	-1.954	2.699	24.07	2.38	32.0	0.0	11.60	0.0	0.0	
	7	4	1.149	5.756	6.23	1.93	2.0	0.0	3.73	0.0	0.0	
4	8	6	0.000	3.521	28.86	0.00	0.0	0.0	0.00	0.0	0.0	

http://vl.jthaler.net/olympicswiki/doku.php?id=lhc_olympics:data_file_format_

* PGS's pure-ASCII-type output file format. Prepared initially for the LHC Olympics, but has recently become quite standard.

#	type	eta	phi	pt	jmass	#trk	btag	had/em	dum1 dum2
0		39	1043	'					
1	0 -	1.350	3.341	26.11	0.00	0.0	0.0	0.00	0.0
2	1	0.663	5.233	164.40	0.00	1.0	0.0	0.02	missing
3	2 -	0.589	4.675	147.62	0.11	-1.0	4.0	95.99	transverse energy
4	4 -	0.629	4.998	308.94	85.25	12.0	2.0	0.33	
5	4 -	2.061	1.571	455.01	156.56	32.0	0.0	1.19	$p_x = 27 \text{ GeV}$
6	4 -	1.954	2.699	24.07	2.38	32.0	0.0	11.60	py11 Gev
7	4	1.149	5.756	6.23	1.93	2.0	0.0	3.73	.0
8	6	0.000	3.521	28.86	0.00	0.0	0.0	0.00	0.0 0.0
	-	1						1	

http://vl.jthaler.net/olympicswiki/doku.php?id=lhc_olympics:data_file_format_

* PGS's pure-ASCII-type output file format. Prepared initially for the LHC Olympics, but has recently become quite standard.

#	type	eta	phi	pt	jmass	#trk	btag	had/em	dum1	dum2
0		39	1043	*						
1	0	-1.350	3.341	26.11	0.00	0.0	0.0	0.00	0.0	0.0
2	1	-0.663	5.233	164.40	0.00	1.0	0.0	0.02	0.0	0.0
3	2	-0.589	4.675	147.62	0.11	-1.0	4.0	95.99	0.0	0.0
4	4	-0.629	4.998	308.94	85.25	12.0	2.0	0.33	0.0	0.0
5	4	-2.061	1.571	455.01	156.56	32.0	0.0	1.19	0.0	0.0
6	4	-1.954	2.699	24.07	2.38	32.0	0.0	11.60	0.0	0.0
7	4	1.149	5.756	6.23	1.93	2.0	0.0	3.73	0.0	0.0
8	6	0.000	3.521	28.86	0.00	0.0	0.0	0.00	0.0	0.0

http://vl.jthaler.net/olympicswiki/doku.php?id=lhc_olympics:data_file_format

New Kid on the Block - Delphes

- * **Delphes** is a new generic fast simulation package developed by S. Ovyn, X. Rouby, V. Lemaitre (UC Louvain), written in C++.
- * Some extra features beyond PGS:
 - * Separate treatment of barrel, endcap and forward calorimeters.
 - * Calorimeter energy resolution has noise term (1/E).
 - * Bending of charged particles in the B-field.
 - * SISCone, Cambridge/Aachen, anti-kT jet algorithms.
 - * Optional energy-flow algorithm to improve resolutions.
 - * Zero-degree calorimeters, roman pots.
 - * Smart tau reconstruction model.

- * Default parameterizations well tested against expected response of ATLAS & CMS.
- * What is the catch? Very recent, prepare to fight with possible bugs!

http://arxiv.org/abs/0903.2225v3

V. Erkcan Özcan, Bogaziçi University

 $\langle \! \rangle$

ISTAPP '11, Istanbul

Doing your own...

* Neither PGS nor Delphes simulates charge mis-identification for leptons.

If you have a special signal, like some supersymmetric particle or heavy Majorana leptons, etc., the distinguishing feature of your signal can be 2 or 3 same-sign e/µ. How do you estimate the background from SM lll+v process with one of leptons being mis-measured?

* Go to published performance of the detector you are interested in.

- * Find the part relevant to you, ie. some sort of plot or number that shows what is the charge mis-measurement rate. Parameterize the plot by extracting bin-by-bin numbers or doing a conservative fit.
- * As you loop through your generated MC events, roll a die for each lepton and flip its charge based on the expected rate of mismeasurement as extracted from your parameterization.

 \diamond

3 Leptons in SM

 $\Delta P_T/P_T$ outside indicated ranges from **CERN**-**OPEN-2008-020 (ATLAS)**, for the combined muon algorithm with worse performance. The last tail curve ("charge"), shows charge mis-measurement fraction. In red dashed line, our conservative parameterization.

charge mis-measurement conservatively parameterized: $\epsilon_{mischarge}$ (P_T) = 10^{-4+PT/200GeV}

 * For each muon, get a random number distributed uniformly in [0,1]. If that number is smaller than ε_{mischarge}(P_T^{muon}), flip sign of muon.

V. Erkcan Özcan, Bogaziçi University

 $\langle \bullet \rangle$

Want more?

- * We did not talk about simulators that are relevant for studies of future accelerators/detectors.
 - * Accelerator Design: madx (from CERN, used in the design of the LHC, for magnet structure, beam transport, etc.) ; parmela (from LANL, for FEL and photoinjector design, beam transport, etc.)
 - * Computing beam-beam interactions, brightness, inpurs to event generators: Guinea-PIG, Cain, Calypso, ...
 - * For fun and education: Radiation2D (2D EM wave simulation)

V. Erkcan Özcan, Bogaziçi University

Summary

- * Monte Carlo Simulation is an indispensable tool in PP.
 - * Allows calculation of acceptances, cut efficiencies, background estimations, cross-sections... (Also enables PhD students to graduate when LHC is not running. :-))
- * Simulation happens mainly in two steps: Event generators and detector simulation.
 - * Detector simulation with Geant4 is amazingly accurate, but very slow.
 - * Fast simulation uses parameterization of the detector to smear generatorlevel quantities.
- * Know the limits of your simulation tools.
 - * If your simulation package fails to address an important component of the detector response, write your own small MC.

V. Erkcan Özcan, Bogaziçi University

Homework

* Write short programs (possibly as a ROOT macro) to compute the following definite integrals using Monte Carlo methods.

 $\int_{0}^{1} \int_{0}^{1} \cos(x+y) \, dx \, dy \quad \int_{-1}^{0} \int_{0}^{1} \cos(x+y) \, dx \, dy \quad \int_{-1}^{1} \int_{-1}^{1} \cos(x+y) \, dx \, dy$

* Repeat the computation of the first integral 1000 times and fill a histogram of the values you get. What is the rms value of the distribution?

* Bonus puzzle: Can you identify what physics signal is the event listed on the <u>slide</u> that discussed the LHCO format.

BONUS STUFF

How to use events in StdHep format with PGS or Delphes

- * The easiest way of doing this is using the pythia-pgs and the Delphes packages that are provided as supporting components to Madgraph.
 - * Change to the Madgraph install directory.
 - * Make a clean copy of the Template directory and change into that copy: cp -r Template test ; cd test
 - * Prepare your PGS input card, ie. edit the Cards/pgs_card.dat file with your favorite text editor.
 - * Move into the Events directory: cd Events
 - * Copy your Stdhep event file into the current directory and name it as pythia_events.hep: cp whereeverYourFileIs/eventFileName pythia_events.hep
 - * Run PGS or Delphes: ../bin/run_pgs or ../bin/run_delphes
 - * To make ROOT files out of them (assuming you have ExRootAnalysis too):

../../ExRootAnalysis/ExRootLHCOlympicsConverter pgs events.lhco pgs events.root

V. Erkcan Özcan, Bogaziçi University

 \diamond

Models of Electron, Pion and Muon Energy in PGS

http://online.itp.ucsb.edu/online/lhco_c06/conway/

V. Erkcan Özcan, Bogaziçi University

 \diamond

ISTAPP 'I I, Istanbul

