BSM theories & signals

ISTAPP 2011 - Gökhan Ünel / U.C.Irvine

Last Lecture of week 1, prelude to week 2

- => what should you get out of it?
- + A review of the BSM theories on the "Market"
- + Typical signatures of most prominent models
 - Expected results for $\sqrt{s} = 14$ TeV, ATLAS, (CMS is very similar)
- + No homework, sit back and relax but don't snore!

BSM models: Exotics

A brief summary of popular models:

- Grand Unified Theories:
 - SM gauge group is embedded into a larger one like SO(10), to unify EW and QCD.
 - additional fermions and bosons predicted.
- Little Higgs models:
 - spontaneously broken global symmetry to impose a cut-off ~10 TeV.
 - additional bosons and quarks introduced to cure the hierarchy problem.
- Extra Dimensions:
 - Low Planck scale in d dimensional theory solves the hierarchy problem between EW and Gravitational couplings.
 - Excitations of SM bosons and fermions are predicted.
- And Many More like Fourth Generation, Hidden Valley, Unparticles....
- ▶ Most of these models do **not** exclude supersymmetry.

SM ingredients

- Fermions as matter particles
 - Quarks & Leptons

- ▶ Gauge group structure
 - gauge bosons as force carriers

- ▶ EW Symmetry Breaking
 - mass via Higgs bosons

SM is like your old car: you like it but you also know it has problems...

- ▶3+1 space-time
- ▶ SM can not be the final theory:
 - Hierarchy problem: δH ~ MH
 - EW and Strong forces not unified
 - Arbitrary fermion masses & mixings
 - Arbitrary number of families
 - Unknown source of baryogenesis

SM to BSM

Fourth Family

Fermions as matter particles

Quarks & Leptons

new quarks

new leptons | lepto-quarks |

new constituents composite models

GUTs

Gauge G

▶ Gauge group structure

gauge bosons as force carriers

new gauge bosons

Little Higgs

▶ EW Symmetry Breaking

mass via Higgs bosons

2HDMs

new scalars

new EWSB

▶3+I space-time

new dimensions

RS Model

ADD Models

Dynamical Symmetry Breaking

Technicolor

SM to BSM

New constituents excited vs*

excited vs* ** 2004-047

predicted by: composite (preonic) models

§produced as: single ($\nu \nu^*/\nu^* e$) via Z,W, γ

 φ decay via: boson + lepton: $\nu\gamma, \nu Z, eW$

Fast MC based study

*scan neutrino mass: [500,..,2500]

*consider 2 coupling possibilities:

with and w/o νγ decay (same disc. limit)

* other excited fermions (e*,q*) also studied, but not reported here.

SN-ATLAS-2006-056

- predicted by: E₆ GUT
- produced as: pairs from gluon (quark) fusion
- [©]decay via: boson + light jet

- *Fast MC based study
- *scan new quark mass
- *pair production is mixing independent

about q=-1/3 singlets

▶E₆ model introduces new particles:

$$SU_C(3) \times SU_W(2) \times U_Y(1) \subset \mathbf{E_6}$$

• one iso-singlet quark per family:

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, u_R, d_R, D_L, D_R \begin{pmatrix} c_L \\ s_L \end{pmatrix}, c_R, s_R, S_L, S_R \begin{pmatrix} t_L \\ b_L \end{pmatrix}, t_R, b_R, B_L, B_R$$

Assumptions:

- I. In-family mixing bigger than between family mixing
- 2. D quark is the lightest, like SM: most accessible in LHC
- 3. E₆ gauge bosons heavy & don't interact w/ SM bosons

$$D oup Zd \qquad D oup Wu$$
 BR 33% 66% if there is no Higgs 25% 50% if Higgs is light

Higgs search & q=-1/3 quarks

- d-D mixing leads to dDh vertex at tree level
- this can be exploited for a double discovery: light H & D
- pair production mode considered for ATLAS using FastMC
 - m_D =250 -1000 GeV range scanned

m _D =250 (500) GeV					
D_1	D_2	BŘ	expected final state		
$D \rightarrow h j$	$D \rightarrow h j$	$0.029 \ (0.053)$	$2j \ 4j_b$		
$D \rightarrow h j$	D o Z j	$0.092 \ (0.120)$	$2j \ 2j_b \ 2l$		
$D \rightarrow h j$	$D \to Wj$	$0.190 \ (0.235)$	$2j \; 2j_b \; l \; E_{T,miss}$		

signal: $I \ell +2j +2b_j +E^T_{miss}$

- 5σ Higgs discovery in DD→Whjj channel can be made using 100 fb⁻¹ if m_D <700 GeV
- If m_D <630 GeV, this channel becomes as efficient as $h\rightarrow\gamma\gamma$. (i.e. 8σ in 100 fb⁻¹)

- predicted by: Little Higgs
- produced as: single from W exchange
- decay via: boson + (t or b) jet

$$q\dot{b} \rightarrow q'T \rightarrow q'Wb \ (ht, Zt)$$

- Fast MC based study
- *function of T quark mass and t-T mixing
- *all 3 decay channels studied.

T is observable with 300 fb⁻¹:

*up to ~2.5 TeV via Wb,

*up to ~1.4 TeV via Zt. at maximum t-T mixing

New quarks doublets

predicted by: DMM

sproduced as: pairs from gluon (quark) fusion

\$decay via: W + jet (no FCNC)

- *Fast MC based study
- *scan new quark mass
- •results for 100 fb-1 shown

 $pp \rightarrow u_4 \bar{u}_4$ or $d_4 d_4$

- •broad signal at 320 GeV d4
- Exact knowledge of BG shape needed

*new studies for other CKM mixings done, but not yet made public.

 $m_{i,i,b}(GeV)$

CPV source (for BAU)

- ⇒ 3x3 CKM is 10¹⁰ too short to match WMAP data
- \rightarrow new quarks of (300) 600 GeV would give (10¹³) 10¹⁵ more CPV_{mhref [GeV]}

Alternative EW symmetry breaking

- → 4th generation fermion condensate can play the Higgs role
- ⇒ 5D AdS, K.K. excitations of gauge bosons interacting w/ 4th generation fermions => Yukawa couplings & mass hierarchy

• Fermion mass hierarchy

→ observed masses of fermions in the first 3 families arise from perturbations to a flavour-blind 4x4 mass matrix.

Dark Matter candidates

⇒ hadrons from stable t', v', additional fermions of spin-charge unification models

000

0.2

-> S = 0.248096 T==0.187666RR= 4.2967

(when: u4=490.00 GeV, d4=5

N OPUCEM [User:erkcan, Host:pb-d-128-141-140-78.cern.ch] Compiled GUI

 (e^+,μ^+)

ATLAS-PHYS-2003-014

 Z^0, Z'

 $(e^{\dagger}, \mu^{\dagger})$

predicted by: Fourth family, E₆ GUT, technicolor...

produced as: pairs from gluon (quark) fusion

[©]decay via: boson + lepton

- *Fast MC based study
- function of L, Z' mass

predicted by: GUTs & composite models

produced as: pairs + single from g-g (q) fusion

decay via: e(type1) or V(type2) + light jet

*Fast MC based study for Scalar & Vector LQs

*Coupling K, $\lambda=e$ (for V)

*LQ-mass scanned

<u>~~</u>+--

SM to BSM

ATLAS-PHYS-PUB-2006-003

predicted by: SO(10), E6.. GUTs, Little Higgs, EDs

- produced as: s channel from q-q' annihilation
- Sidecay via: top-b $q \bar{q'} o W' o tb o \ell
 u bb$
 - *Fast MC based study
 - •W-W_H coupling via cotθ
 - *W_H mass 1 & 2 TeV considered

Discovery plane for 300fb⁻¹ data

New bosons: Z'

predicted by: SO(10), E6.. GUTs, Little Higgs, EDs

produced as: from q-q annihilation

decay via: fermion pairs

- ▶ Dileptons (ee, µµ) provide a clear search channel
- ▶ Current lower limits: 700-800 GeV from Tevatron
- ► CMS example of 1.5 TeV Z' from electrons (clean signal)

- ▶Z' that couples to hadrons only, hadrophilic
- ▶ Could explain 2.8 σ discrepancy in A^b_{FB} (world average)
- ▶CMS search w/ full simulation for $Z' \rightarrow di$ -jets
 - $Z^{(1)} = 2 ... 3 \text{ TeV}$
 - Model independent search

Discovery up to $\sim 3.5 \text{ TeV possible}$ using data from $\int \text{Lumi} = 10 \text{fb}^{-1}$

but which Z'?

- ▶Once discovered (!) how to determine which particle / model:
 - particle identification from spin is "easy"

$$\frac{d\sigma}{d\cos\theta} = \frac{3}{8}(1+\cos^2\theta) + A_{\text{FB}}\cos\theta$$

$$egin{array}{lll} heta &=& rac{\ell . ec{q}}{|p|.|q|} \ heta_{\mathrm{FB}} &=& rac{\ell_F - \ell_B}{\ell_B + \ell_B} \end{array}$$

A_{FB}: coupling dependent, predicted by theory

$$Z' = 3 \text{TeV}, \int L = 400 \text{ fb}^{-1}$$

not so easy!! (for some models)

Various E₆ Z's

- From E6 down to SM , but how?
 - E₆ \rightarrow SO(10) ×U(1) $_{\psi}$ \rightarrow SU(5) ×U(1) $_{\chi}$ ×U(1) $_{\psi}$ 4+1+1=6
 - E₆ \rightarrow SU(3)C×SU(2)L×U(1) γ ×U(1) η =SM×U(1) η 4+1=5
- Available neutral bosons: Z_{ψ} , Z_{χ} , Z_{η}
- Define mass eigenstates: Z', Z"
 - $Z' = Z_{\psi} \cos \theta Z_{\chi} \sin \theta$ && $Z'' = Z_{\chi} \cos \theta + Z_{\psi} \sin \theta$
 - $\theta = 0 : Z'_{\psi}$,
 - $\bullet \theta = -\pi/2 : Z'_{\chi}$
 - \bullet =-arcsin($\sqrt{3/8}$): Z'_{η}
- ▶ How about W'?
 - E₆ \rightarrow SU(3)C×SU(2)L×SU(2)R×U(1)L×U(1)C : Left-Right symmetric model 4+1+1=6
 - E₆→SU(3)C×SU(2)L×U(1)γ×SU(2)×U(1)′
 - each SU(2) introduces W[±]
 - selected breaking down of E₆ to SM determines the predicted particles & couplings

 $pp \to \gamma^n/Z^n \to \ell^+\ell^-$

SN-ATLAS-2007-065

- predicted by: RS, ADD models
- produced as: from q-q annihilation
- [©]decay via: lepton pairs
 - *FULL simulation based study
 - •3 Parameter sets to reproduce the fermion masses & mixings (A, B, C)
 - only electrons were reconstructed

Discovery reach is about 6 TeV depending on the model for 100fb⁻¹ data.

SM to BSM

New Scalars q=±2

- predicted by: Little Higgs, LRSM
- produced as: pair via q-q annihilation & single via W fusion

3500

3000

2500

2000

1500

1500 2000

M_{A**} (GeV)

- [©]decay via: lepton pairs
 - *Fast MC based study
 - •W⁺_R & Δ⁺⁺ mass scanned for min 10evts
 - •e,µ & ⊤ channels separately studied
 - *results for 100(a) & 300(b) fb-1 shown

single production reach ~1.8TeV depending on mW+

- predicted by: Dynamical SB models, technicolor
- produced as: from q-q annihilation
- [©]decay via: boson pairs

- *Fast MC based study
- *Scan ρ_T mass for different π_T

Discovery with 30fb⁻¹ data possible depending on model parameters

New EVSB susy

- Give up the (so far) observed "spin" asymmetry between matter and force carriers: s-partners for all SM particles
 - solves Fine Tuning, DM.. problems
- SUSY not observed: sparticles <u>heavy</u>: broken symmetry
- Rich phenomenology (even with Rparity):
 - large # of parameters: >100 in MSSM case*
 - many SB options: MSSM, mSUGRA, GMSB, AMSB..
- Common properties:

has 5 parameters

has 6 parameters

Normal elementary particles

Super-symmetry

(SUSY) particles

- cascade decays of sparticles to high p_T objects ,
- stable LSP escapes undetected: large E_Tmiss.

Look for: jets + E_Tmiss and leptons + jets + E_Tmiss

#parameters=124 given in SN-ATLAS-2006-058

SN-ATLAS-2007-049

ISAJET +MICROMEGAS

- mSUGRASHUESP is DM candidate
- 102000 •model should be consistent with WMAP data $ilde{\chi}_1^0$
- Reparity imposes pair production $pp \to \tilde{g}\tilde{g}$ $\tilde{g} \to \tilde{\chi}^+ tb$
 - *Fast MC based study
 - •m_{1/2}-m₀ parameter space scanned

- Susy breaking scale close to weak scale
 - •LSP is gravitino, FCNC is suppressed
- Reference points with different model parameters & NLSP
 - *Fast MC based study @ G3 (NLSP is stau)
 - •G3b: NLSP is quasi-stable

•G3b: NLSP is quasi-stable •G3a: NLSP immediately decays $\tilde{q} \to \tilde{\chi}^0_{1,2} q \to \tilde{\ell} \ell q \to \tilde{\tau}(\tau) \ell \ell q \to \tilde{G} \tau(\tau) \ell \ell q$ leptons +jets + $\mathbf{E}_\mathsf{T}^\mathsf{miss}$

Excellent signal with few fb-1 in both cases

> G3a: stau decays before detection but dips can be calculated & fit:

$$M_{\tau l}^{max} = \sqrt{M_{\tilde{l}_R}^2 - (M_{\tilde{\tau}_1} + M_{\tau})^2}$$

SM to BSM

Fermions as matter particles Fourth Quarks & Leptons Family composite new new quarks new leptons lepto-quarks constituents models **GUTs** Gauge group structure gauge bosons as force carriers Super Symmetry Gauge G Little ▶ EW Symmetry Breaking Higgs • mass via Higgs bosons **Dynamical** Symmetry new scalars new EWSB Breaking 2HDMs Technicolor ▶3+| space-time new ADD **RS Model** dimensions Models

some ED concepts

▶ Large Extra Dimensions (LED, ADD):

- compactified, flat
- $M_{Pl}^2 \sim R_n M_S^{2+n}$, M_S : string scale
- Graviton in bulk

▶TeV-I ED (DDG):

- M_C: compactification scale
- Gauge & Higgs bosons in bulk as well

▶ Warped Extra Dimensions (RS):

- 2-branes solution: RS type I
- k/MPl, k: curvature, warp factor
- narrow spin-2 resonances: Graviton

▶ Universal Extra Dimensions (UED):

- KK-number conservation
- M_C and cut-off scale Λ
- All SM particles in the bulk
- Lots of KK spectra (similar to SUSY signatures)

Arkani-Hamed, Dimopoulos, Dvali Phys Lett B429 (98)

Dienes, Dudas, Gherghetta Nucl Phys B537 (99)

Randall, Sundrum Phys Rev Lett 83 (99)

EDS graviton

SN-ATLAS-2001-005

predicted by: all ED models

produced as: from q-q annihilation, q-g/g-g fusion

decay via: - (stable)

 $gg/gq/q\bar{q} \to gG$

*#EDs=2,3,4 & ED scale scanned

M _{Pl(4+d)} MAX(TeV)	δ=2	δ=3	δ=4
30fb ⁻¹	7.7	6.2	5.2
100fb ⁻¹	9.1	7.0	6.0

EDS Excited gluons

SN-ATLAS-2006-002

- predicted by: TEV-1 EDs (DDG)
- produced as: from q-q annihilation
- [©]decay via: heavy quark pairs

- *Fast MC based study
- *q* mass scanned [1..3] TeV

300 fb⁻¹ allows reaching 3.3 TeV with 5σ

Warped Extra Dimensions

Randall Sundrum (Type I)

- ▶ Brane metric scales as function of bulk position
- ▶ Coupling constant:

c= k/M_{Pl}, k: curvature scale

Well separated narrow-width graviton mass spectrum with masses

$$m_n = kx_n e^{krc\pi} (J_1(x_n) = 0)$$

$$\left| ds^2 = e^{-2ky} \eta_{uv} dx^u dx^v - dy^2 \right|$$

µ-Blackholes

- Arise from models with ED
- Could be produced when E_{CM} > M_{Pl}
- Need QT of gravity as M_{BH} approaches M_{PI}
- $\sigma \sim \pi R_S^2 \sim 1 \text{ TeV}^{-2} \sim 10^{-38} \text{ m}^2 \sim O(100) \text{pb}$
- LHC could be a Black Hole Factory with rates as high as I Hz.

If the impact parameter of a 2-parton collision < Schwarzschild radius R_s , then a black hole with M_{BH} is formed.

BH from LED, possible from RS as well

µBH Detection

- BH lifetime ~ 10⁻²⁷ 10⁻²⁵ seconds!
- Decays with equal probability to all particles via Hawking Radiation (roughly a blackbody spectrum)
- evaporates into (hadron : lepton)= (5 : I)
 accounting for t, W, Z and H decays

Distinguishing features

- High Multiplicity, ΣE_T, Sphericity, MP_T
- Democratic Decay

6.1 TeV M_{BH}

Decay

J. Tanaka, "Search for Black Holes", 24/05/03 Athens

Summary

- *LHC experiments have very rich discovery potential for BSM physics.
- ©Concentrated on a small selection of BSM possibilities;
 - •some models (e.g. micro BHs) not mentioned,
 - differentiation between models not shown,
 - •boost to standard searches from BSM physics not shown.
- ©Only summary results shown
 - From scientific or pub notes, mostly published
 - Mostly from Fast MC simulation results (next week more on MCs)
- Experiments will tell us which model is closer to the truth

Back up slides:

* a few slides about Higgs Searches

* a few words about susy

Higgs production

VBF WW/ZZ fusion

associated WH, ZH

Higgs decay

Low mass

High mass

Low mass searches

1. $H \rightarrow \gamma \gamma$ S/B \sim_{10}^{-2} despite BF \sim 10⁻³

2. ttH (WH,ZH) with $H \rightarrow bb$ (b-tagging, 4 b-jets) DIFFICULT due to systematic errors

ttH \rightarrow tt bb \rightarrow b $\ell\nu$ bjj bb

3. $qqH \rightarrow qqTT$ VBF: jets over $\eta \cdot \sqrt{5}$ forward jet tag + central jet veto for τ ID

 $qqH \rightarrow qq\tau$

The golden channel

130 ≤ m_H < 700 GeV

 $H \rightarrow ZZ^{(*)} \rightarrow 4 \text{ leptons}$

Discovery with less than 10 fb⁻¹ for 130< $m_{H}^{<}$ 160 GeV, $2m_{Z}^{<}$ $m_{H}^{<}$ 550 GeV

combining various channels for m_{Higgs}<200GeV exclusion from LEP and Tevatron shown in shaded areas

GMSB susy

Masses of the gauginos are produced via couplings to a massive messenger sector

Parameters (general model has 124):

- → Λ: Breaking scale
- → M: Mass scale of the messengers
- tanβ: Ratio of Higgs vacuum expectation values
- → N: Number of messenger chiral supermultiplets
- → sign(µ): Sign of the Higgs mass parameter
- → C_{grav}: Scale factor of the Gravitino mass → lifetime of NLSP

mSUGRA

▶ 5 Parameters

- m₀: scalar mas
- m¹/₂: gaugino mass
- A0 : H sf sf couping const.
- •tanβ: vev ratio of 2 Hs
- $sgn(\mu)$: sign of H mass parameter

Ref: Gilly Elor and Andre Bach