Event generation progress

AKA what Aurora did this summer

What is my goal?

Apply ML computer vision techniques on LHC data.

End-to-end classifier

- Takes in low-level matrix data:
 - Calorimeter towers
 - Tracks
- Does not use reconstructed particle objects (like met, photons, jets etc)
- Matrix data corresponds to detector geometry: ATLAS is a BIG camera
- Images made from data (the whole event in one image)
- Uses neural networks for classification
- Outputs the label of the event

3 different event types

1. ttbar

- \circ top + antitop -> W⁺ b W⁻ b⁻
- \circ p_T > 1000 GeV (in event generation stage)
- 2. Microscopic black holes (hypothetical)
 - Requires extra spatial dimensions (4-6 should be explored)
 - Could be produced at LHC
 - Minimum mass can be defined. 8-12 TeV should be explored.
- 3. Sphalerons (hypothetical)
 - A "particle like" solution to the electroweak field equations
 - Could look similar to black hole event

Generation process (will be improved)

	Parton level	Hadronization	Detector response
ttbar	PYTHIA g g -> t tbar q qbar -> t tbar PhaseSpace:mHatM in = 1000 GeV PhaseSpace:pTHat Min = 1000 GeV	Herwig7 PDFName MSTW2008lo68cl	DELPHES ATLAS card
Black holes	BlackMax Minimum_mass(GeV) 8-12000 Maximum_mass(GeV) 18000	Herwig7 PDFName MSTW2008lo68cl	DELPHES ATLAS card
Sphalerons	Herwig7 Not working	Not working now Herwig7 Andreas Papaefstathiou	DELPHES ATLAS card

Data sets for this presentation

ttbar: min 1 TeV during event generation black_holes: BH_n6_M8 (6 extra dimensions, min 8 TeV mass) sphalerons: Andreas made this file

n_events = 10 000 per event type

```
train/test = 0.8/0.2
```

ttbar is pretty easy to separate from the other two, but it is good to have such a sanity check. With this data I expect at least 80% accuracy on the ttbar classification. I will make a more relevant sample later.

Object multiplicity

Sphalerons have significantly more jets, electrons and muons.

30

25

20 Lercent 15

10

5

0.

Tower deposits

ET = Total energy, Eem = electromagnetic calorimeter energy, Ehad = hadronic calorimeter energy.

Making the images

3 channel RGB, square RESxRES, normalised to 0-255

RES = 100 for now

Following procedure by <u>Andrews2020</u> (CMS Open Data paper)

R = Eem G = Ehad B = Tracks

Energy[Energy>MAX_ENERGY] = MAX_ENERGY Energy = 255*Energy/MAX_ENERGY

There are many possibilities

Data augmentation: create many more images by doing random phi rotations or flipping over phi axis (eta = -eta).

Resolution

Filters:

Different saturation level Treat layers differently Smearing

Machine learning

- Very preliminary efforts
- Mostly proof of concept
- See notebook for details on implementation:

https://github.com/choisant/imcalML/blob/main/notebooks/CNN_simple_classi fier.ipynb

- Pytorch, from scratch models:
 - Simple CNN with 3 layers
 - Resnet with 18 layers

CNN (3 conv layers, 2 fc layers)

Optimizer: Adam Loss function: Cross Entropy

Lr = 0.0001 constantly

10 000 images, 10 epochs, 58 seconds (GPU)

Data aug: Random flip horizontally and vertically

Easy to distinguish ttbar from the rest (expected with this data), harder to separate BH and sphalerons.

Predicted Values

Resnet18 (18 layers)

Optimizer: Adam Loss function: Cross Entropy

10 000 images, 10 epochs, 1 min 58 seconds (GPU)

Lr = 0.0005 constantly

Data aug: Random flip horizontally and vertically

4000

Accuracy: 86.0%

Predicted Values

Resnet34 (34 layers)

Optimizer: Adam Loss function: Cross Entropy

10 000 images, 10 epochs, 3 min 36 seconds (GPU)

Lr = 0.0005 constantly

Data aug: Random flip horizontally and vertically

Accuracy: 87.0%

Improvement by 1% from resnet18, but took twice the time to train.

Predicted Values

To do

- Decide which data to use
- Implement random phi rotations for basically unlimited data augmentation
- Do some model analysis
 - Try to use the LUMIN framework to utilise FoldYielder functions (making ensembles of models)
- Figure out who is doing what for this paper
 - HVL contributions
 - GRIEG contributions
 - UiB contributions
 - Aurora contribution