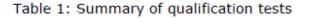


Status of ELQA equipment and related software

- Reference document (EDMS 788197):
 - Recall of ELQA tests and terminology
- Status of the hardware
- Status of the software
- Long shutdown activities:
 - ELQA campaigns
 - R2E & Collimators in P3



ELQA standard tests during HWC

		Cir	Local dipole orbit corrector					
	TP4-A	MIC-W	TP4-B	TP4-C	MIC-C	TP4-E	DOC-W	DOC-C
	At	At	After	During	At	At	At	At
	warm	warm	flushing	cool-down	cold	cold	warm	cold
ORC								
HVQ								
TFM								
ICC								
DPC								
MIC								

Needs for diagnostic in case:

During ORC, we find an open circuit at warm or open/resistive circuit at cold? During HVQ, we find a frank short/breakdown at warm at cold? During MIC, we found a broken voltage taps or a defective quench heater (open or too resistive) at warm, at cold?

Standard scenario

Phase	At warm	Flushing	At warm	Cool-down 300 K to 1.9 (4.5) K	Cryogenic conditions
TP4-A					
DOC-W					
MIC-W					
TP4-B			^		
TP4-C					
TP4-D					
DOC-C					
MIC-C					
TP4-E					
		ole 2: Test seque ipole's diode po	1	ard cool down phase. ng!	
HV monito possibility t	See Mateusz presentation				

Hardware (1/3):

TP4 systems

We have 4 such mobile systems designed to do all TP4, DOC and MIC tests

- Limitation: Max. 8 teams if 2 shifts a day!
- Critical: The Matrix box is "home made" (= black box) built by the Polish collaboration (3 PCBs inside), No spare parts!
- We should build 2 more TP4 in order to have: An improved version of this matrix box To have spare parts Easier logistics (transport = risk of damaging our racks)

Hardware (2/3):

TP4 systems

- Rest is off the shelf equipment but is ageing: Keithley 2750/E (x9) HP power supply (x4) Kepco Amplifier (x4)
- We are buying 6 x "GP-102" Frequency Response Analyser from Powertek UK to replace our Solartron SI-1253 for TFM measurements => New possibilities.

Hardware (3/3)

- Laptops: The older ones will need to be replaced.
- HVQ « Long live crate » used for TP4, DOC, MIC, HVQN, PAQ and Monitoring (20 crates): Not a issue!
- Racks that were used during the assembly phase:
 - AIV1, AIV2: 2 systems available: Too few?
 - We could use our TP4 systems (would need new software)
- Hardware for diagnostic:
 - Time Domain Reflectometer, Megger TDR2000/2
 - Digital Low Resistance Ohmmeter, Megger DLRO 10
 - 2 NI-PXIs: Presently used for IRSM measurements on IPQs (Multipurpose)
 - We want to buy 2 oscilloscopes

Software

- Migration to Win 7 should not be a problem
- Upgrade of all our applications to the latest version of LabVIEW (LabVIEW 2010) should not be a problem for TP4, DOC, MIC, CHVQ applications
- Older applications like AIV, PAQ, HVQN (more than 5 years old) needs to be rewritten
- The Matrix box in TP4 systems is strongly interdependent with all our applications
 - A modification of the matrix box will imply re-witting all applications
 => Polish collaboration
- ELQA Oracle DB up to date (needs to be maintained)
 - All data from previous campaigns are available from our web site
 - Needs to develop new tools for data extraction

Activities during next long shutdown

Rework of 13kA Splices :

At places where TE/MSC will **replace** a magnet:

• We will need to redo AIV1, AIV2 and PAQ tests in close collaboration with TE/MSC group as during assembly phase.

At places where only 13 kA inter-connexions will be redone (spools & Line N not touched):

• We need "only" to check the electrical insulation before closing the hydraulic connections (manchette).

Full ELQA campaigns (at warm & at cold) before LHC restarts.

<u>R2E:</u>

Since this year, we are responsible for the current leads heating system:

Relocation of 3 racks (UJ14, UJ16, UJ56) => Order of non standard cable (thermo-couple), re-commissioning the racks after relocation

Collimators in P3:

Displacement of DFBAE and DFBAF: All the equipment behind the current leads (transformers) including the PE crate will be moved to put a cryogenic extension link to the QRL => Cabling and recommissioning

Thank you for your attention