

HIE-ISOLDE (High Intensity and Energy) project Protection of superconducting solenoids

MPE work shop – December 14, 2010 G.J. Coelingh TE-MPE-CP

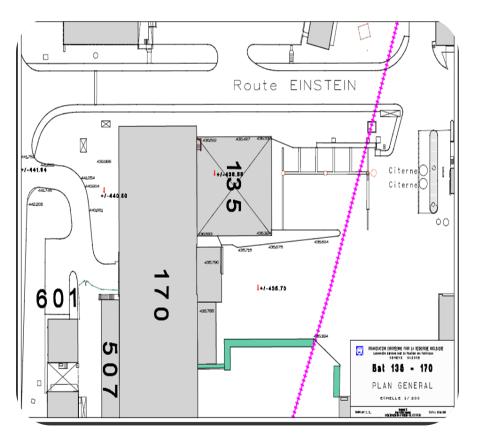
Overview

- HIE-ISOLDE Project
 - Overview, layout, work structure, QPS budget
- Circuits to protect
- Quench Detection
 - Magnet, Current Leads
- Energy Extraction
- Resources

Scope of HIE-ISOLDE

Energy Upgrade:

The HIE-ISOLDE project concentrates on the construction of the SC LINAC and associated infrastructure in order to upgrade the energy of the post-accelerated radioactive ion beams to 5.5 MeV/u in 2013 and 10 MeV/u by 2014/2015


Intensity Upgrade:

The design study for the intensity upgrade, also part of HIE-ISOLDE, starts in 2011, and addresses the technical feasibility and cost estimate for operating the facility at 10 kW once LINAC4 and PS Booster are online. The 30 kW option (SPL beam) will be studied at a later stage

HIE-ISOLDE Layout

International Advisory Panel

1. Project Management

2. Linac Systems

3. Infrastructure & Integration

> 4. Installation & Commissioning

5. Target Study

6. Target Area and Class-A Lab Integration

2.1 Cavity RF BE/RF 2.2 Cavity Design manufacturing EN/MME TE/VSC 2.3 Beam dynamics BE/RF-ABP 2.4 Cryomodules TE/MSC EN/MME 2.5 Beam Instrumentations BE/BI 2.6 SC Solenoid TE/MSC 2.7 Beam transfer line (magnets) TE/MSC 2.8 Linac Integration EN/MEF 2.9 Vacuum TE/VCS 2.10 Survey BE/ABP 3.1 Civil Engineering GS/SEM 3.2 Integration EN/MEF 3.3 Cooling ventilation EN/CV 3.4 Electrical systems EN/EL 3.5 Cryogenic system TE/CRG 3.6 Power converters TE/EPC 3.7 Industrial Control system EN/ICE 3.8 Beam Control system BE/CO 3.9 Interlocks TE/MPE 4.1 Single cavity test BE/RF 4.2 Cryomodule test BE/RF 4.3 Transport & Handling EN/HE 4.4 Planning & Installation EN/MEF 4.5 Linac commissioning BE/RF-OP 5.1 Target design EN/STI-HE 5.2 Front Ends EN/STI TE/EPC-ABT 5.3 Beam Diagnostics BE/BI 6.1 Layout upgrade EN/MEF 6.2 Cooling and ventilation EN/CV 6.3 Electrical systems EN/EL 6.4 Vacuum TE/VCS 6.5 Survey BE/ABP 6.6 Civil engineering GS/SEM

6.7 LL Control system EN/STI

1.1 Project Leader – Y. Kadi (EN/HDO)1.2 Project Safety Coordinator – A.P. Bernardes1.3 Technical Coordinator – M. Pasini BE/RF1.4 Design Study Coordinator – R.Catherall EN/STI1.5 Budget and Planning – E.Delachenal EN/GMS1.6 Administration – E. Cochet EN/GMS

8.1 Safety Coordinator GS/DI 8.2 Radioprotection DG/SCR 8.3 Access System GS/ASE 8.4 Access System GS/ASE

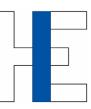
Work Breakdown Structure

7. Injection & Beam distribution

7.1 Off line separator EN/STI

7.2 Separator areas EN/STI

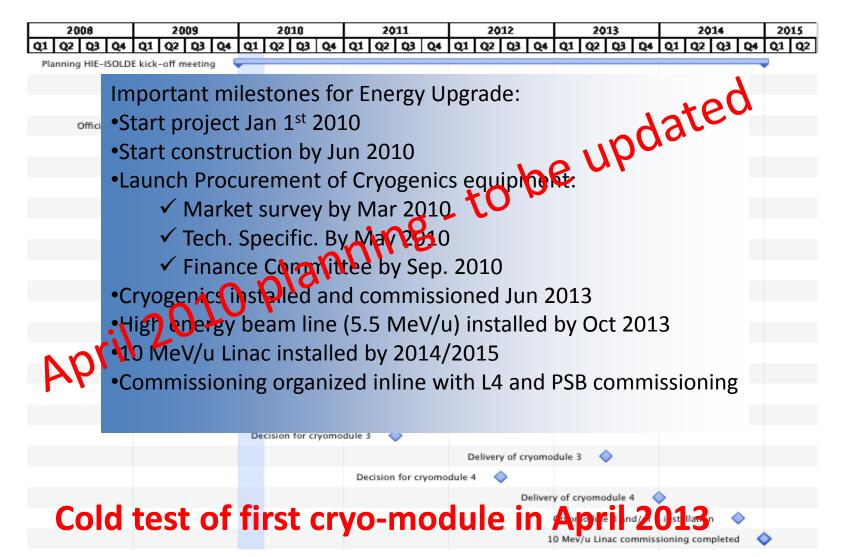
7.3 Experiment Hall EN/MEF


7.4 Beam lines BE/ABP

HIE-ISOLDE Project

HIE-LINAC

Design Study


HIE-ISOLDE material budget

Title	РРА	Work Package	Code	Dep. 💌	Group	Total 💌 Request
HIE-ISOLDE Linac (M. Pasini BE/RF)						
SC Cavity RF	EIS-PRJ	WP2.1		BE	RF	2'320
SC Cavity Design & Manufacturing	EIS-PRJ	WP2.2.1	55601	EN	MME	3'700
SC Cavity Sputtering	EIS-PRJ	WP2.2.2		TE	VSC	553
SC Cavity Sputtering (IS)	EIS-PRJ	WP2.2.2		TE	VSC	355
SC Cavity Test	EIS-PRJ	WP4.1		BE	RF	-
SC solenoids						656
Cryomodules						4'600
Cryomodules (MME)	EIS-PRJ	WP2.4.1	55602	EN	MME	413
Cryomodule Test	EIS-PRJ	WP4.2	99159	TE	MSC	-
Beam Dynamics	EIS-PRJ	WP2.3		BE	RF	-
Beam Instrumentations	EIS-PRJ	WP2.5		BE	BI	1'450
Beam Transfer Line	EIS-PRJ	WP2.7		TE	MSC	1'710
Linac Integration/Installation	EIS-PRJ	WP2.8 & WP4.4	55603	EN	MEF	80
Linac Commissioning	EIS-PRJ	WP4.5		BE	RF	-
Vacuum	EIS-PRJ	WP2.9		TE	VSC	1'400
Survey	EIS-PRJ	WP2.10		BE	ABP	201
					Total	17'638

HIE-ISOLDE Schedule

• MPE work shop – December 14, 2010

Circuits

- 8 individually powered circuits with S.C. solenoids of 130 mH each
- Nominal current 450 A Stored Energy 13 kJ

- Powering scheme tbd. Grounding, Series/parallel extraction
- Protection delay tbd. This will determine EM or SSt switch

• MPE work shop – December 14, 2010

Quench Detection

 Magnet Detection based on existing digital LHC – SAM detectors

- 4 redundant voltage taps on layer 0, layer 8, layer 12 and layer 20.
- First tap on the top and the redundant at the bottom.
 - The difference will be 0.5 turns which should be negligible for the detection system

Quench Detection & Controls

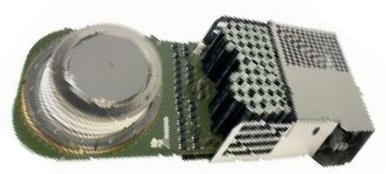
 Lead detection depending on lead type but most likely conventional cupper model will be used. Tbd.

- Controls/Data transfer to be determined Field Bus or Ethernet?
 - Valid for Detection and Extraction
- Interlocks PC-QPS-EE-PIC. Tbd.

Strategic Plan for EE

- Solid State Switch development recently started
 - Goal: Prototype by May/June 2011
 - Challenge to finish series production before 2.5 years from now
- In parallel: upgrade existing LHC 600 A EE system; improvements from exploitation/maintenance points of view
 - 10 systems can be delivered within 2 years
- If choice will be Solid State use EM systems as spares for LHC

Two, 600A extraction systems in a common rack

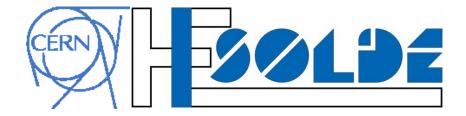

EE: Solid State or EM

- Solid State Switch: Semi-conductor IGCT
 - Integrated Gate Commutated Thyristor
 - Fast and "maintenance" free vs

Forward Losses – water cooling

 Electro-Magnetic circuit breaker very low forward losses vs maintenance (preventive & corrective)

IGCT and its integrated drive electronics.


Resources 2011 - 2012

- Project Manager: 20% 2011 15% 2012
- Project Engineer EE: 20% 2011 20% 2012
- Project Engineer QPS: 25% 6 months 2011
 - 10% later
- Technician: 20% 2011 10% 2012
- Design: 35-50% 6 months 2011 10% later

Thank you for your attention

MPE work shop – December 14, 2010