
Cambridge 19th April 1

Comparisons between 

Event Generators and 

Data

Peter Richardson

IPPP, Durham University



Summary

• Introduction

• Basics Of Event Generation

• Multiple Parton-Parton Scattering

• Jets

• Vector Bsons with Jets

• Conclusions

Most plots taken from talks at last weeks 

SM@LHC and DIS meetings.
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Introduction

• Monte Carlo event generators are designed to 

simulate hadron collisions using a combination 

of:

– Fixed order perturbative calculations;

– Resummation of large QCD logarithms;

– Phenomenological Models.

• It’s important to understand the different pieces of 

the simulation.

• Some are on firm theoretical ground and we’d be 

surprised if they didn’t work, others might break 

down in the new energy regime of the LHC.
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A Monte Carlo Event

Initial and Final State parton showers resum the 

large QCD logs.

Hard Perturbative scattering:

Usually calculated at leading order 

in QCD, electroweak theory or 

some BSM model.

Perturbative Decays 

calculated in QCD, EW or 

some BSM theory.

Multiple perturbative 

scattering. 

Non-perturbative modelling of the 

hadronization process.

Modelling of the 

soft underlying 

event

Finally the unstable hadrons are 

decayed.



Introduction

• The different models are generally tuned to 

different types of data:

– parameters relating to the final-state parton 

shower and hadronization are tuned to LEP data;

– parameters relating to initial-state parton showers 

and multiple parton-parton interactions are tuned 

to data from the Tevatron and UA5.

• We expected that the shower and 

hadronization models would work at LHC 

energies, less sure about the underlying 

event.
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The Underlying Event
• Protons are extended objects.

• After a parton has been scattered out of each in 

the hard process what happens to the remnants?

Two Types of Model:

1) Non-Perturbative: Soft parton-parton cross section is so large that 

the remnants always undergo a soft collision.

2) Perturbative: ‘Hard’ parton-parton cross section is huge at low 

pT, dominates the inelastic cross section and is 

calculable.
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Multiparton Interaction Models

• The cross-section for 2g2 

scattering is dominated by t-

channel gluon exchange.

• It diverges like

• This must be regulated used a 

cut of pTmin.

• For small values of pTmin this is 

larger than the total hadron-

hadron cross section.

• More than one parton-parton 

scattering per hadron collision
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Multiparton Interaction Models
• If the interactions occur independently then follow 

Poissonian statistics

• However energy-momentum conservation tends to 

suppressed large numbers of parton scatterings.

• Also need a model of the spatial distribution of 

partons within the proton.
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Multiparton Interaction Models

• In general there are two options for regulating the 
cross section.

where         or       are free parameters of order 2 
GeV.

• Typically 2-3 interactions per event at the Tevatron 
and 4-5 at the LHC.

• However tends to be more in the events with 
interesting high pT ones.
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Prior to LHC

• Before the LHC data from:

– UA5 experiment;

– CDF at 630, 1800 and 1960 GeV.

were used to constrain the parameters of the 

underlying event model.

• The data at the higher Tevatron energies is 

the best for tuning the parameters at a 

specific energy.

• Need the other points to extrapolate the 

parameters to LHC energies.
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Charged Particle Multiplicities at √s=0.9, 7 TeV

Christophe Clement

Physics at LHC,  DESY, June  9th, 2010  ―  

ATLAS First Physics Results

Monte Carlo underestimates the 

track multiplicity seen in ATLAS
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Multiple Parton Scattering

• Results are encouraging.

• The results of the tunes made before data 

taking don’t exactly agree with the data but 

aren’t orders of magnitude off.

• Including the new results in the fitting gives 

good agreement.

• The models therefore seem reasonable, 

although some theoretical tweaking, e.g. 

colour reconnection in Herwig++ required, but 

not a major rethink of the whole approach.
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Improving the Simulations
• Prior to the LHC there was a lot of theoretical 

work designed to improve parton showers by 

merging the results: 

– with NLO calculations giving the correct NLO 

cross section and description of the hardest 

emission (MC@NLO Frixione and Webber, 

POWHEG Nason);

– with LO matrix elements to give the correct 

description of many hard emissions (MLM and 

CKKW);

– Combining both approaches MENLOPS Hamilton 

and Nason.
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NLO Simulations
• NLO simulations rearrange the 

NLO cross section formula.

• Either choose C to be the 

shower approximation

MC@NLO (Frixione, Webber)
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NLO Simulations
• Or a  more complex arrangement 

POWHEG(Nason)

where
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Pros and Cons

POWHEG

• Positive weights.

• Implementation doesn’t 

depend on the shower 

algorithm.

• Needs changes to shower 

algorithm for non-pT

ordered showers.

• Differs from shower and 

NLO results, but changes 

can be made to give NLO 

result at large pT.

MC@NLO

• Negative weights

• Implementation depends on 

the specific shower 

algorithm used.

• No changes to parton 

shower. 

• Reduces to the exact 

shower result at low pT and 

NLO result at high pT
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Drell Yan

CDF Run I Z pT D0 Run II Z pT

Herwig++

POWHEG

MC@NLO

JHEP 0810:015,2008 Hamilton, PR, Tully



Different Approaches

• The two approaches 

are the same to NLO.

• Differ in the 

subleading terms.

• In particular at large pT
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Multi-Jet Leading Order
• While the NLO approach is good for one hard

additional jet and the overall normalization it cannot

be used to give many jets.

• Therefore to simulate these processes use 

matching at leading order to get many hard 

emissions correct.

• The most sophisticated approaches are variants of 

the CKKW method (Catani, Krauss, Kuhn and Webber JHEP 

0111:063,2001)

• Recent new approaches in SHERPA( Hoeche, Krauss, 

Schumann, Siegert, JHEP 0905:053,2009) and Herwig++(JHEP 

0911:038,2009 Hamilton, PR, Tully)



Jets

• We would expect the parton shower 

simulations to describe most properties of up 

to dijet systems, apart from the total cross 

section.

• For higher jet multiplicities need either 

CKKW/MLM or the recent POWHEG 

simulation of jet production.

• For the NLO rate the only option is the 

POWHEG simulation.
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Inclusive Jet Production
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Taken from 1009.5908 ATLAS
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NLO Jet Production
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POWHEG compared to ATLAS data arXiv:1012.3380 Alioli et. al. 
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Jet Substructure
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Taken from CMS PAS JME-10-013
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V+jet production

• Traditionally the production of W/Z bosons in 

association with many jets has been an 

important test of improvements to the parton 

shower, e.g. CKKW and MLM.

• Easier to calculate than pure jet production 

and has the advantage of a large scale from 

the mass of the boson.
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Summary
• We’ve spent a long time developing a new 

generation of simulations for the LHC.

• So far things look O.K. but that may well change 

as statistics improve and systematic errors 

reduce.

• A tune of PYTHIA can describe pretty much 

anything, not clear that there’s a tune of 

PYTHIA that can describe everything.

• Limited use of the new generation of tools, 

hopefully this will improve as higher statistics 

requires more accurate predictions.


