Flavour Physics at LHCb

Val Gibson University of Cambridge

Collider Phenomenology 2011

- Introduction
- The LHCb experiment
- Production Studies

All results very new!!

- First observation of new B_{s} decays
- Search for new CP phases in B mixing
- Search for NP contributions to rare B decays
- Summary

LHCb is designed to find evidence of New Physics through the indirect effect that the new degrees of freedom may have on heavy flavour (B and D) decays.

The search is complimentary to direct searches and provides information on the masses, couplings, spins and CP phases.

New Physics needs to have a special flavour structure

- to provide the suppression mechanism for FCNC processes already observed.
- It may be too "special"... Minimal Flavour Violation (MFV) models in which the flavour structure of the NP is governed by the CKM matrix.

New Physics in $\mathrm{B} \rightarrow \mu^{+} \mu^{-}$

Example: the discovery power of the measurement of $\mathrm{B}\left(\mathrm{B}_{\mathrm{d}, \mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$

$M_{A}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$
MFV would retain flavour universality

$$
\frac{B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)}{B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}=\left|\frac{V_{t d}}{V_{t s}}\right|^{2}
$$

LHCb recorded $\sim 38 \mathrm{pb}^{-1}$ in 2010 with $\sim 90 \%$ efficiency and is running smoothly in 2011.

Expect $\sim 200 \mathrm{pb}^{-1}$ by summer conferences and $\sim 1 \mathrm{fb}^{-1}$ by end 2011 .

LHCb is already competitive with CDF/D0 who have $6000 \mathrm{pb}^{-1}$ of data, even though the bb cross-section is only $3 x$ higher...

$$
\sigma(p p \rightarrow b \bar{b})=(284 \pm 4 \pm 48) \mu \mathrm{b}
$$

This is possible due to the LHCb acceptance, trigger and detector resolution. arXiv:1103.0423 (sub. EPJ C

High multiplicity events

A big challenge for the detector operation $\frac{{ }_{z}^{2}}{}$ trigger, reconstruction and analysis. High track multiplicity and many vertices.

Design : $\mathrm{L}=2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$,

2010: $L=1.6 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$,

$$
n_{b}=344, \mu_{\max }=2.7 \text { (} 6 x \text { expected!) }
$$

Also very useful to gauge LHCb upgrade performance

B Mass Measurements

LHCb-CONF-2011-027

Channel	LHCb Mass, stat and sys $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	PDG $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$
$\mathrm{B}^{+} \rightarrow \mathrm{J} / / \Psi \mathrm{K}^{+}$	$5279.27 \pm 0.11 \pm 0.19$	5279.17 ± 0.29
$\mathrm{B}^{0} \rightarrow \mathrm{~J} / / \psi \mathrm{K}^{*} 0$ $\mathrm{~B}^{0} \rightarrow \mathrm{~J} / / \Psi \mathrm{K}_{\mathrm{s}}$	$5279.54 \pm 0.15 \pm 0.15$	5279.50 ± 0.30
$\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{J} / / \Psi \phi$	$5366.60 \pm 0.28 \pm 0.20$	5366.3 ± 0.60
$\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / / \Psi \Lambda$	$5619.48 \pm 0.70 \pm 0.19$	5620.2 ± 1.6
$\mathrm{~B}_{\mathrm{c}} \rightarrow \mathrm{J} / / \psi \pi^{+}$	$6268.0 \pm 4.0 \pm 0.5$	6277 ± 6

LHCb momentum scale known to ~ 0.1 per mille

Excellent mass resolution (6-10 Mev/c²)

Worlds best B mass measurements! (except B_{c})

Collider Phenomenology 2011

инсb Heq
 B Lifetime Measurements

LHCb-CONF-2011-001

Channel	LHCb lifetime, stat and sys (ps)	PDG (ps)
$\mathrm{B}^{+} \rightarrow \mathrm{J} / / \Psi \mathrm{K}^{+}$	$1.689 \pm 0.022 \pm 0.047$	1.638 ± 0.011
$\mathrm{~B}^{0} \rightarrow \mathrm{~J} / / \Psi \mathrm{K}^{*} 0$	$1.512 \pm 0.032 \pm 0.042$	1.525 ± 0.009
$\mathrm{~B}^{0} \rightarrow \mathrm{~J} / / \Psi \mathrm{K}_{\mathrm{s}}$	$1.558 \pm 0.056 \pm 0.055$	
$\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{J} / / \Psi \phi$	$1.447 \pm 0.064 \pm 0.056$	1.477 ± 0.046
$\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / / \Psi \Lambda$	$1.353 \pm 0.108 \pm 0.035$	1.391 ± 0.038

Using lifetime unbiased trigger and $\mathrm{t}>0.3 \mathrm{ps}$

Excellent proper time resolution ~ 50 fs

Production Studies

Onia (J/ $\left.\Psi, \Upsilon, \chi_{c}\right) \quad X(3872) \quad B_{c} \quad B$ fractions

Inclusive J / ψ
arXiv:1103.0423 (sub. EPJ C)
Double J/ ψ
LHCb-CONF-2011-009

Inclusive Υ
LHCb-CONF-2011-016

χ_{c} Production

Inclusive prompt $\chi_{\mathrm{c}} \rightarrow \mathrm{J} / \psi \gamma$ production useful for testing NRQCD: colour singlet and octet mechanisms.

LHCb-CONF-2011-020
Photon identification based on calorimeter and tracking information

Heb
 Central Exclusive Production

LHCb observes low-multiplicity events with large rapidity gaps.
Exclusive events have no backward tracks and only $2 \mu(+1 \gamma)$ in forward region.
 X(3872)
$\mathrm{X}(3872)$ discovered in 2003 by Belle in $\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$decays.
Since then observed in 4 experiments

Nature still unclear

- tetraquark ?
- Bound DD* molecule?
- $\eta_{\mathrm{c} 2}(1 \mathrm{D})$ charmonium state?

CDF
BaBar B
BaBar B^{0}
D0
Belle
PDG Average 3871.56 ± 0.22
LHCb Preliminary
New average 3871.63 ± 0.20

 B_{c} Production
$\mathrm{B}_{\mathrm{c}}{ }^{+}$is the heaviest heavy quark meson (cb) and is useful for constraining QCD.
First observation at CDF in 1998. Only been seen in 3 decay modes :
$\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \psi \pi^{+}$(~ 100 cands.), $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \psi \mu^{+} v$ and $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \psi \mathrm{e}^{+} v(\sim 1 \mathrm{k}$ cands. each)
At LHCb, we measure for $p_{T}\left(B_{c}{ }^{+}\right)>4 \mathrm{GeV} / \mathrm{c}$:

$$
R_{c+}=\frac{\sigma\left(B_{c}^{+}\right) \times B\left(B_{c}^{+} \rightarrow J / \psi \pi^{+}\right)}{\sigma\left(B^{+}\right) \times B\left(B^{+} \rightarrow J / \psi K^{+}\right)}=(2.2 \pm 0.8 \pm 0.2) \%
$$

59 ± 18 events observed.
4.1σ statistical significance

Looks great for the LHCb B_{c} physics program.

B fractions

B fractions important input for all branching ratio measurements, in particular $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}$ for $\mathrm{B}\left(\mathrm{B}_{\mathrm{d}, \mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$.

First Observation of new B_{s} decays

HHCh
 $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / / \Psi \mathrm{f}_{0}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \Psi^{\prime} \phi$

PLB 698 (2011) 115

$$
\frac{\Gamma\left(\mathrm{B}_{\mathrm{s}} \rightarrow J / \psi f_{0}, f_{0} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(\mathrm{B}_{\mathrm{s}} \rightarrow J / \psi \phi, \phi \rightarrow K^{+} K^{-}\right)}=0.252_{-0.032-0.033}^{+0.046+0.027}
$$

First

LHCb-CONF-2011-024

$$
\frac{B\left(B_{s} \rightarrow \psi^{\prime} \phi\right)}{B\left(B_{s} \rightarrow J / \psi \phi\right)}=0.68 \pm 0.10(\text { stat }) \pm 0.09(\text { syst } .) \pm 0.07(B)
$$

LHCb Preliminary $\sqrt{\mathrm{s}}=7 \mathrm{TeV}$

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{*} \mathrm{~K}^{*}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{K}$

LHCb-CONF-2011-019

Penguin decay, similar to $\mathrm{B}_{\mathrm{s}} \rightarrow \phi \phi$

$B\left(\overline{B_{s}} \rightarrow K^{*} \overline{K^{*}}\right)=\left(\begin{array}{r}1.95 \\ \pm 0.47(\text { stat }) \\ \\ \pm 0.66(\text { syst }) \\ \\ \pm 0.29\left(f_{d} / f_{s}\right)\end{array}\right) \times 10^{-5}$
$B\left(B_{s} \rightarrow J / \psi \overline{K^{*}}\right)=\left(3.5_{-1.0}^{+1.1}(\right.$ stat $) \pm 0.9($ syst $\left.)\right) \times 10^{-5}$

Assuming that all events are $\mathrm{K}^{*} \rightarrow \mathrm{~K} \pi$

Search for new CP phases in B_{d} and B_{s} mixing

CP angle γ
$B \rightarrow h^{+} h^{-}$
B_{s} CP phase, ϕ_{s}

The Golden Triangle

Fantastic achievement over the last decade to test the SM picture of quark couplings, especially CP Violation.

The state of the art is encapsulated in the Unitarity Triangle

$$
\begin{gathered}
V_{\text {CKM }}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right) \\
\text { L.Wolfenstein PRL } 51(1983) 1945 \\
A=0.815_{-0.029}^{+0.011} \\
\bar{\rho}=0.144_{-0.018}^{+0.029} \\
\bar{\eta}=0.22543_{-0.00077}^{+0.00077} \\
J_{C P}=\left(2.98_{-0.18}^{+0.016}\right) \times 10^{-5}
\end{gathered}
$$

CKMfitter group, PRD 83036004 (2011)

The Golden Triangle

Fantastic achievement over the last decade to test the SM picture of quark couplings, especially CP Violation.

The state of the art is encapsulated in the Unitarity Triangle

$$
\begin{aligned}
& V_{C K M}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1 \\
\text { L.Wolfenstein PRL } 51 \text { (1983) }
\end{array}\right) \\
& \text { L.Wolfenstein PRL } 51 \text { (1983) } 1945 \\
& A=0.815_{-0.029}^{+0.011} \quad \lambda=0.22543_{-0.00077}^{+0.00077} \\
& \bar{\rho}=0.144_{-0.018}^{+0.029} \quad \bar{\eta}=0.322_{-0.016}^{+0.016} \\
& J_{C P}=\left(2.98_{-0.18}^{+0.16}\right) \times 10^{-5}
\end{aligned}
$$

Amazing consistency!

CKMfitter group, PRD 83036004 (2011)

The Golden Triangle

Fantastic achievement over the last decade to test the SM picture of quark couplings, especially CP Violation.

The state of the art is encapsulated in the Unitarity Triangle

$$
\begin{gathered}
V_{C K M}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1 \\
\text { L.Wolfenstein PRL } 51(1983) 1945
\end{array}\right. \\
A=0.815_{-0.029}^{+0.011} \quad \lambda=0.22543_{-0.00077}^{+0.00077} \\
\bar{\rho}=0.144_{-0.018}^{+0.029} \\
\bar{\eta}=0.322_{-0.016}^{+0.016} \\
J_{C P}=\left(2.98_{-0.18}^{+0.16}\right) \times 10^{-5}
\end{gathered}
$$

Amazing consistency!
Beautiful validation of CKM picture.

CKMfitter group, PRD 83036004 (2011)

The Golden Triangle

Fantastic achievement over the last decade to test the SM picture of quark couplings, especially CP Violation.

The state of the art is encapsulated in the Unitarity Triangle

$$
\begin{gathered}
V_{C K M}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right) \\
\text { L.Wolfenstein PRL } 51(1983) 1945 \\
A=0.815_{-0.029}^{+0.011} \\
\bar{\rho}=0.144_{-0.018}^{+0.029} \\
J_{C P}=\left(2.98_{-0.18}^{+0.16}\right) \times 10^{-5} \\
J_{-0.016}
\end{gathered}
$$

Amazing consistency!
Any NP contributions are small.

CKMfitter group, PRD 83036004 (2011)

$\Delta_{q}=\left|\Delta_{q}\right| e^{i \phi_{q}^{\Delta}}$
CKMfitter, PRD 83036004 (2011)

Both B_{d} (due to the measurement of $\mathrm{B}^{+} \rightarrow \tau \mathrm{v}$) and B_{s} (due to the measurement of ϕ_{s}) disfavour the SM at 2.7σ.
There is plenty of room for NP.....
LHCb goals: 1. Precise determination of γ at tree level $\gamma=\left(71_{-25}^{+21}\right) \mathrm{deg}$.
2. Precise determination of ϕ_{s}

The theoretically cleanest method measures γ via the interference between $B \rightarrow D^{0} K$ and $B \rightarrow \bar{D}^{0} K$; only affected by possible NP in D^{0} mixing.

Reconstruct D in final states accessible to both D^{0} and $\overline{D^{0}}$

- Time integrated analysis requires no tagging, need to extract suppressed channels or Dalitz analysis of 3-body D^{0} decays.
- Time dependent analysis

$$
B^{0} \rightarrow D^{-} \pi^{+}, \quad B_{s} \rightarrow D_{s}^{-K^{+}}
$$

Expect to measure γ with a combined precision of $\sim 5^{\circ}$ from 2011/2012 data.

Hich

Prospects for γ from trees

In analogy to the decay $B^{ \pm} \rightarrow D^{0} K^{ \pm}$, the decay $B^{ \pm} \rightarrow D^{0} K^{ \pm} \pi^{+} \pi^{-}$can also be used to determine γ.
LHCb has measured the CF multi-body $\mathrm{B} \rightarrow \mathrm{D} \pi^{ \pm} \pi^{+} \pi^{-}$decays
LHCb-CONF-2011-007 and for the first time observed the CS $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{ \pm} \pi^{+} \pi^{-}$decays.

LHCb-CONF-2011-018
First

$$
\begin{gathered}
\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} K^{-} \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-} \pi^{+} \pi^{-}\right)}=(5.2 \pm 0.9(\text { stat }) \pm 0.5(\text { syst })) \times 10^{-2} \\
\frac{\mathcal{B}\left(B^{-} \rightarrow D^{0} K^{-} \pi^{+} \pi^{-}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{0} \pi^{-} \pi^{+} \pi^{-}\right)}=(9.6 \pm 1.5(\text { stat }) \pm 0.8(\text { syst })) \times 10^{-2} .
\end{gathered}
$$

This decay may be a potentially dangerous background for the measurement of the CP angle γ

LHCb-CONF-2011-008

$$
B\left(\overline{B_{s}} \rightarrow D^{0} K^{*}\right)=\left(4.44 \pm 1.00(\text { stat }) \pm 0.55(\text { syst }) \pm 0.56\left(f_{s} / f_{d}\right) \pm 0.69\left(B_{\bar{B}^{0} \rightarrow D^{0} \rho^{0}}\right)\right) \times 10^{-4}
$$

Hich

Prospects for γ from loops

Large penguin contributions are expected for $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}-$ and $\mathrm{B}_{\mathrm{d}} \rightarrow \pi^{+} \pi^{-}$.

Assuming U-spin symmetry and using the
 known B_{d} mixing phase, the time-dependent CP asymmetry of these decays allows for a measurement of γ

LHCb-CONF-2011-011

New measurement of the $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}$ - lifetime using two complimentary methods gives

$$
\tau\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)=(1.44 \pm 0.096 \pm 0.010) \mathrm{ps}
$$

$L H C b$ Observation of direct CP violation in $B \rightarrow K \pi$

Direct CP asymmetry in $B_{d} \rightarrow K \pi$ is well-established, but not yet in $\mathrm{B}_{\mathrm{s}} \rightarrow \pi \mathrm{K}$.

$$
\begin{aligned}
& A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right) \approx A_{K^{+} K^{-}}^{d i r} \\
& A_{C P}\left(B_{s}^{0} \rightarrow \pi^{+} K^{-}\right) \approx A_{\pi^{+} \pi^{-}}^{d i r}
\end{aligned}
$$

Detector asymmetries: use D^{*} and $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$

$$
A_{D}=(-0.4 \pm 0.4) \%
$$ Production asymmetries: use $\mathrm{B}^{ \pm} \rightarrow \mathrm{J} / \psi \mathrm{K}^{ \pm}$

$$
A_{P}=(-2.4 \pm 1.7) \%
$$ Aside: D^{0} production asymmetry

$$
A_{P}\left(D^{0}\right)=(-1.08 \pm 0.32 \pm 0.12) \%
$$

$$
\begin{array}{|lll}
A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-0.074 \pm 0.033 \pm 0.008 & A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=-0.098_{-0.011}^{+0.012} \\
A_{C P}\left(B_{s}^{0} \rightarrow \pi^{+} K^{-}\right)=0.15 \pm 0.19 \pm 0.02 & A_{C P}\left(B_{s}^{0} \rightarrow \pi^{+} K^{-}\right)=0.39 \pm 0.17
\end{array}
$$

Interference of mixing and decay in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

$$
\phi_{s}=\phi_{M}+2 \phi_{D}
$$

Standard Model

$\phi_{M}^{S M}=-2 \arg \left(V_{t s} V_{t b}^{*}\right)=-2 \beta_{s} \quad \phi_{D}^{S M}=-2 \arg \left(V_{c s} V_{c b}^{*}\right) \approx 0$

$$
\phi_{s}^{S M}=-0.0363 \pm 0.0017 \mathrm{rad}
$$

Possible NP

$$
\phi_{s}=\phi_{s}^{S M}+\Delta \phi_{s}^{N P}
$$

- SM prediction

B_{s} CP Phase

The measurement of ϕ_{s} is non-trivial.

- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / / \Psi \phi$ admixture of CP even/odd eigenstates 3 polarization amplitudes $A_{\perp} \quad C P$ odd $\ell=1$

$$
A_{0}, A_{\|} \quad C P \text { even } \ell=0,2
$$

3 transversity angles

$$
\Omega=\{\vartheta, \varphi, \psi\}
$$

- Signal event distribution

$$
S(\lambda, t, \Omega)=\varepsilon(t, \Omega) \times\left[\frac{1+q D}{2} \cdot s(\lambda, t, \Omega)+\frac{1-q D}{2} \cdot \bar{s}(\lambda, t, \Omega)\right] \otimes R_{t}
$$

Physics parameters $\lambda=\left(\Gamma_{s}, \Delta \Gamma_{s},\left|A_{0}\right|^{2},\left|A_{\perp}\right|^{2}, \delta_{\|}, \delta_{\perp}, \phi_{s}, \Delta m_{s}\right)$ Constraint $\Delta m_{s}=17.77 \pm 0.12 \mathrm{ps}^{-1}$

The measurement of ϕ_{s} is non-trivial.

- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / / \Psi \phi$ admixture of CP even/odd eigenstates 3 polarization amplitudes $A_{\perp} \quad C P$ odd $\ell=1$

$$
A_{0}, A_{\|} \quad C P \text { even } \ell=0,2
$$

3 transversity angles

$$
\Omega=\{\vartheta, \varphi, \psi\}
$$

- Signal event distribution

Acceptance

$$
S(\lambda, t, \Omega)=\varepsilon(t, \Omega) \times\left[\frac{1+q D}{2} \cdot s(\lambda, t, \Omega)+\frac{1-q D}{2} \cdot \bar{s}(\lambda, t, \Omega)\right] \otimes R_{t}
$$

Physics parameters $\lambda=\left(\Gamma_{s}, \Delta \Gamma_{s},\left|A_{0}\right|^{2},\left|A_{\perp}\right|^{2}, \delta_{\|}, \delta_{\perp}, \phi_{s}, \Delta m_{s}\right)$ Constraint $\Delta m_{s}=17.77 \pm 0.12 \mathrm{ps}^{-1}$

The measurement of ϕ_{s} is non-trivial.

- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / / \Psi \phi$ admixture of CP even/odd eigenstates 3 polarization amplitudes $A_{\perp} \quad C P$ odd $\ell=1$

$$
A_{0}, A_{\|} \quad C P \text { even } \ell=0,2
$$

3 transversity angles

$$
\Omega=\{\vartheta, \varphi, \psi\}
$$

- Signal event distribution

$$
\begin{gathered}
\text { Acceptance } \quad \text { Flavour tagging } \\
S(\lambda, t, \Omega)=\varepsilon(t, \Omega) \times\left[\frac{1+q D}{2} s(\lambda, t, \Omega)+\frac{1-q D}{2} \cdot \bar{s}(\lambda, t, \Omega)\right] \otimes R_{t}
\end{gathered}
$$

Physics parameters $\lambda=\left(\Gamma_{s}, \Delta \Gamma_{s},\left|A_{0}\right|^{2},\left|A_{\perp}\right|^{2}, \delta_{\|}, \delta_{\perp}, \phi_{s}, \Delta m_{s}\right)$ Constraint $\Delta m_{s}=17.77 \pm 0.12 \mathrm{ps}^{-1}$

The measurement of ϕ_{s} is non-trivial.

- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi$ admixture of CP even/odd eigenstates 3 polarization amplitudes $A_{\perp} \quad C P$ odd $\ell=1$

$$
A_{0}, A_{\|} \quad C P \text { even } \ell=0,2
$$

3 transversity angles

$$
\Omega=\{\vartheta, \varphi, \psi\}
$$

- Signal event distribution

$$
\begin{gathered}
\text { Acceptance } \\
S(\lambda, t, \Omega)=\varepsilon(t, \Omega) \times\left[\frac{1+q D}{2} s(\lambda, t, \Omega)+\frac{1-q D}{2} \cdot \bar{s}(\lambda, t, \Omega)\right] \otimes R_{t}
\end{gathered}
$$

Physics parameters $\lambda=\left(\Gamma_{s}, \Delta \Gamma_{s},\left|A_{0}\right|^{2},\left|A_{\perp}\right|^{2}, \delta_{\|}, \delta_{\perp}, \phi_{s}, \Delta m_{s}\right)$ Constraint $\Delta m_{s}=17.77 \pm 0.12 \mathrm{ps}^{-1}$

The measurement of ϕ_{s} is core to the LHCb physics program

1. Select signal decay and cross-check channels

Determination of lifetimes (see slide 8)
LHCb-CONF-2011-001

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{~J} / / \Psi \phi, \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{~J} / / \Psi \mathrm{K}^{*}, \mathrm{~B}^{+} \rightarrow \mathrm{J} / / \Psi \mathrm{K}^{+} \\
& \mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{~J} / / \Psi \mathrm{K}_{\mathrm{s},}, \quad \Lambda_{\mathrm{b}} \rightarrow \mathrm{~J} / / \Psi \Lambda
\end{aligned}
$$

2. Angular analysis \& determination of $\Delta \Gamma_{\mathrm{s}}$

Angular analysis of $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{J} / / \Psi \mathrm{K}^{*}$
Untagged angular analysis of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \Phi$
3. Determination of B production flavour

Determination of $\sin 2 \beta, \Delta m_{d}, \Delta m_{s}$
LHCb-CONF-2011-003
LHCb-CONF-2011-004,010,0 05
4. Determination of ϕ_{s}

Tagged analysis of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \phi$ decays

ϕ_{s} fixed to zero

LHCb-CONF-2011-002

Parameter	Result \pm stat. \pm syst.
$\Gamma_{s}\left[\mathrm{ps}^{-1}\right]$	$0.679 \pm 0.036 \pm 0.027$
$\Delta \Gamma_{s}\left[\mathrm{ps}^{-1}\right]$	$0.077 \pm 0.119 \pm 0.021$
$\left\|A_{0}(0)\right\|^{2}$	$0.528 \pm 0.040 \pm 0.028$
$\left\|A_{\perp}(0)\right\|^{2}$	$0.263 \pm 0.056 \pm 0.014$

CDF note 10206, $L=5.2 \mathrm{fb}^{-1}$
$\Delta \Gamma_{s}=(0.075 \pm 0.035 \pm 0.010) \mathrm{ps}^{-1}$
$\sin 2 \beta, \Delta m_{d}, \Delta m_{s}$

LHCb-CONF-2011-004

World average $\sin 2 \beta=0.672 \pm 0.023$

$$
\Delta m_{s}=17.63 \pm 0.11 \pm 0.04 \mathrm{ps}^{-1} \text { World average } \Delta \mathrm{m}_{\mathrm{s}}=17.77 \pm 0.10 \pm 0.07 \mathrm{ps}^{-1}
$$

Constraints on ϕ_{s}

LHCb-CONF-2011-006

$$
\begin{aligned}
& \phi_{s} \in[-2.7,-0.5] \mathrm{rad} @ 68 \% \mathrm{c} .1 \\
& \phi_{s} \in[-3.5,0.2] \mathrm{rad} @ 95 \% \mathrm{c} .1 .
\end{aligned}
$$

- No meaningful point estimate
- Confidence contours using Feldman-Cousins method
- Statistical errors only: accounts for systematic uncertainty of tagging
- All systematic errors negligible compared with statistics
- \quad SM p-value $=22 \%(1.2 \sigma)$

Standard Model:
$\Delta \Gamma_{\mathrm{s}}=0.087 \pm 0.021 \mathrm{ps}-1$
(A.Lenz, U.Nierste. arXiv:1102.4274)
$\phi_{\mathrm{s}}=-0.0363 \pm 0.0017 \mathrm{rad}$ (CKMfitter)

Constraints on ϕ_{s}

LHCb 2011
0.13 rad sensitivity with $1 \mathrm{fb}^{-1}$

$$
\begin{aligned}
& \phi_{s} \in[-2.7,-0.5] \mathrm{rad} @ 68 \% \mathrm{c} .1 \\
& \phi_{s} \in[-3.5,0.2] \mathrm{rad} @ 95 \% \mathrm{c} .1 .
\end{aligned}
$$

- No meaningful point estimate
- Confidence contours using Feldman-Cousins method
- Statistical errors only: accounts for systematic uncertainty of tagging
- All systematic errors negligible compared with statistics
- \quad SM p-value $=22 \%(1.2 \sigma)$

Standard Model:
$\Delta \Gamma_{\mathrm{s}}=0.087 \pm 0.021 \mathrm{ps}-1$
(A.Lenz, U.Nierste. arXiv:1102.4274)
$\phi_{\mathrm{s}}=-0.0363 \pm 0.0017 \mathrm{rad}$ (CKMfitter)

Search for NP contributions in $\mathrm{B}_{\mathrm{d}, \mathrm{s}}$ rare decays

Search for $\mathrm{B}_{\mathrm{d}, \mathrm{s}} \rightarrow \mu^{+} \mu^{-}$

Search for $\mathrm{B} \rightarrow \mu^{+} \mu^{-}$

Very rare and golden FCNC $b \rightarrow d, s$ transition

Mode	SM
$\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$	3.2 ± 0.210^{-9}
$\mathrm{~B}^{0} \rightarrow \mu^{+} \mu^{-}$	0.10 ± 0.0110^{-9}

A.J.Buras: arXiv:1012.1447
E. Gamiz et al: Phys.Rev.D 80 (2009) 014503

Strong enhancements in MSSM :

$$
B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \propto \frac{\tan ^{6} \beta}{M_{A}^{4}}
$$

Limits from the Tevatron @95\% c.l.
$\operatorname{CDF}(\sim 3.7 \mathrm{fb}-1)\left\{\begin{array}{l}B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<43 \times 10^{-9} \\ B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<7.6 \times 10^{-9}\end{array}\right.$
DO $\left(\sim 6.1 \mathrm{fb}{ }^{-1}\right) \quad B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<51 \times 10^{-9}$

1 Integrated Luminosity $\left[\mathrm{fb}^{-1}\right.$]

Signal and background candidates are discriminated using a 2D likelihood: Multivariate variable (GL) and invariant mass, both obtained from data.

LHCb results @90(95)\% c.I.

$$
\begin{aligned}
& B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<4.3(5.6) \times 10^{-8} \\
& B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<1.2(1.5) \times 10^{-8}
\end{aligned}
$$

LHCb will either find signs of NP or exclude most of the $\tan \beta$ vs M_{A} plane with the 2010/2011 data.

Strong impact on viable SUSY scenarios

- LHCb is producing world-class measurements in flavour physics

$$
\text { e.g. } \Delta m_{s}, \quad \phi_{s}, \quad B\left(B_{d, s} \rightarrow \mu^{+} \mu^{-}\right) \ldots
$$

- New avenues are being explored to search for NP in the B_{s} system with many new decay modes observed

$$
e . g . \quad B_{s} \rightarrow J / \psi f_{0}, \quad B_{s} \rightarrow K^{*} K^{*}
$$

- Many results not mentioned here and still in the pipeline for the 2010 data e.g. W / Z production, D^{0} mixing
- LHCb is running very well in 2011 and expects to collect >200 pb-1 by ~June and $1 \mathrm{fb}^{-1}$ by end of 2011

LHCb is now at the forefront of a new era of discoveries (?) and precision measurements in flavour physics! Exciting times ahead!

Questions?

Flavour Physics

Flavour physics is highly successful. It has led the way to

- The 3 generation Standard Model
- The CKM picture of flavour
- CP Violation

Flavour physics is a proven tool of discovery

$$
\begin{aligned}
& \mathrm{Br}\left(\mathrm{~K}_{\mathrm{L}}^{\mathrm{L}} \mathrm{\mu} \mathrm{\mu}\right) \& \mathrm{GIM} \rightarrow \text { prediction of charm } \\
& \mathrm{CP} \text { violation } \rightarrow \text { need for a 3 }{ }^{\text {rd }} \text { generation } \\
& \mathrm{B} \text { mixing } \rightarrow \text { top quark is very heavy }
\end{aligned}
$$

Many open questions found in the flavour sector

- Why are there 3 generations ?
- What determines the hierarchy of fermion masses?
- What determines the elements of the CKM matrix ?
- What is the relationship between the CKM matrix and the v mixing matrix ?
- What is the origin of CP Violation?

Flavour physics also helps to understand open questions in cosmology
e.g. SM CPV insufficient to explain matter/antimatter asymmetry

LHCb performance: momentum and vertex resolution

Evolution of $\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}$mass resolution with time (MC $\sim 12 \mathrm{MeV} / \mathrm{c}^{2}$)

Fantastic job by a very hard-working group of people improving the alignment!

PV resolution: $\sigma_{x} \sim \sigma_{y} \sim 16 \mu \mathrm{~m}(\mathrm{MC}: 11 \mu \mathrm{~m}), \sigma_{z} \sim 76 \mu \mathrm{~m}$ (MC:60 $\mu \mathrm{m}$) as measured for events with 25 tracks/ event.

IP resolution: $\sigma(\mathrm{IPx}) \sim 15-20 \mu \mathrm{~m}$ in the region of interest. Slope dominated by material interactions rather than misalignment.
LHCb data
(preliminary)

RICH $1 \begin{gathered}\text { LHCb data } \\ \text { (preliminary) }\end{gathered}$
RICH 2

[^0]Collider Phenomenology 2011

RICH PID working close to MC expectations. Clean reconstruction of many hadronic decays.

Trigger efficiencies L0xHLTl determined on data using the tag-and-probe methods:

Trigger efficiencies very close to expectations

Muon trigger ($/ \mathbf{} / \psi$)
Hadron trigger (\mathbf{D}^{0})

Data	$94.9 \pm 0.2 \%$	$60 \pm 4 \%$
MC	$93.3 \pm 0.2 \%$	66%

χ_{c} production

B fractions

LHCb

W \& Z Production

LHCb sensitive to unexplored regions of phase space (W\&Z, low mass Drell-Yan).

W charge asymmetry also sensitive to PDFs.

Prospects for ϕ_{s}

Current performance

	LHCb $36 \mathrm{pb}^{-1}$	CDF $5.2 \mathrm{fb}^{-1}$
$B_{s} \rightarrow J / \psi \phi$	836	6500
Proper time resolution	50 fs	100 fs
OS tagging power	$2.2 \pm 0.5 \%$	$1.2 \pm 0.2 \%$
SS tagging power	work ongoing	$3.5 \pm 1.4 \%$

With current performance, using only OS tagger, expected ϕ_{s} sensitvity for $1 \mathrm{fb}^{-1}$ at 7 TeV is 0.13 rad

- SS tagger will improve sensitivity significantly
- Decay modes with final states which are CP eigenstates

Expect world's best measurement with 2011 data

D0 : evidence for an anomalous like-sign dimuon charge asymmetry
Evidence for an anomalous like-sign dimuon charge asymmetry
D0 Collaboration, arXiv:1005.2757v1
V.M. Abazov, ${ }^{36}$ B. Abbott, ${ }^{74}$ M. Abolins, ${ }^{63}$ B.S. Acharya, ${ }^{29}$ M. Adams,,${ }^{49}$ T. Adams, ${ }^{47}$ E. Aguilo, ${ }^{6}$ G.D. Alexeev, ${ }^{36}$
G. Alkhazov, ${ }^{40}$ A. Alton ${ }^{a},{ }^{62}$ G. Alverson, ${ }^{61}$ G.A. Alves, ${ }^{2}$ L.S. Ancu, ${ }^{35}$ M. Aoki, ${ }^{48}$ Y. Arnoud, ${ }^{14}$ M. Arov, ${ }^{58}$
A. Askew, ${ }^{47}$ B. Åsman,,${ }^{41}$ O. Atramentov,,${ }^{66}$ C. Avila, ${ }^{8}$ J. BackusMayes, ${ }^{81}$ F. Badaud, ${ }^{13}$ L. Bagby, ${ }^{48}$ B. Baldin, ${ }^{48}$ D.V. Bandurin, ${ }^{47}$ S. Banerjee, ${ }^{29}$ E. Barberis, ${ }^{61}$ A.-F. Barfuss, ${ }^{15}$ P. Baringer, ${ }^{56}$ J. Barreto, ${ }^{2}$ J.F. Bartlett,,${ }^{48}$ U. Bassler, ${ }^{18}$ S. Beale, ${ }^{6}$ A. Bean,${ }^{56}$ M. Begalli, ${ }^{3}$ M. Begel, ${ }^{72}$ C. Belanger-Champagne, ${ }^{41}$ L. Bellantoni, ${ }^{48}$ J.A. Benitez, ${ }^{63}$ S.B. Beri, ${ }^{27}$ G. Bernardi, ${ }^{17}$ R. Bernhard, ${ }^{22}$ I. Bertram, ${ }^{42}$ M. Besançon, ${ }^{18}$ R. Be
We measure the charge asymmetry A of like-sign dimuon events in $6.1 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions with the D0 detector at a center-of-mass energy $\sqrt{s}=1.96 \mathrm{TeV}$ at the Fermilab Tevatror From A, we extract the like-sign dimuon charge asymmetry in semileptonic b-hadron deca -0.00957 ± 0.00251 (stat) ± 0.00146 (syst). This result differs by 3.2 standard deviations standard model prediction $A_{\mathrm{sl}}^{b}(S M)=\left(-2.3_{-0.6}^{+0.5}\right) \times 10^{-4}$ and provides first evidence of a CP-violation in the mixing of neutral B mesons.

$$
A_{s l}=-0.00957 \pm 0.00251 \pm 0.00146
$$

$$
A_{s l}^{S M}=\left(-2.3_{-0.6}^{+0.5}\right) \times 10^{-4} \quad 3.2 \sigma
$$

LHCb

Charge asymmetry A_{SL}

LHCb is catching up with DO very quickly.
Reconstruct $B_{d} \rightarrow D^{ \pm} \mu^{\mp} v$ and $B_{s} \rightarrow D_{s}^{ \pm} \mu^{\mp} v$

FCNC $b \rightarrow s$ transition, very sensitive to NP The forward-backward asymmetry arises from the interference between γ and Z^{0} contributions

$$
A_{F B}\left(q^{2}=m_{\mu \mu}^{2}\right)=-C_{10} \xi(s)\left[\operatorname{Re}\left(C_{9}\right) F_{1}+\frac{1}{q^{2}} C_{7} F_{2}\right]
$$

Most reliable predictions are at low $q^{2}\left(1-6 \mathrm{GeV}^{2}\right)$
Early results are showing intriguing hints.

Clean observation of $B_{d} \rightarrow K^{*} \mu^{+} u^{-}(23 \pm 6)$ events close to expectations.
Also, observation of the rarest B decay at LHCb so far: $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}(35 \pm 7)$ events ($\mathrm{Br} \sim 5 \times 10^{-7}$).

Type	Observable	Current precision	LHCb $\left(5 \mathrm{fb}^{-1}\right)$	Upgrade $\left(50 \mathrm{fb}^{-1}\right)$	Theory uncertainty
Gluonic	$S^{\prime}\left(B_{s} \rightarrow \phi \phi\right)$	-	0.08	0.02	0.02
penguin	$S\left(B_{s} \rightarrow K^{* 0} K^{* 0}\right)$	-	0.07	0.02	<0.02
	$S\left(B^{0} \rightarrow \phi K_{S}^{0}\right)$	0.17	0.15	0.03	0.02
B_{s} mixing	$2 \beta_{s}\left(B_{s} \rightarrow J / \psi \phi\right)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S\left(B_{s} \rightarrow \phi \gamma\right)$	-	0.07	0.02	<0.01
currents	$\mathcal{A}^{\Delta \Gamma_{s}\left(B_{s} \rightarrow \phi \gamma\right)}$	-	0.14	0.03	0.02
E/W	$A_{T}^{(2)}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$	-	0.14	0.04	0.05
penguin	$s_{0} A_{\mathrm{FB}}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$	-	4%	1%	7%
Higgs	$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$	-	30%	8%	$<10 \%$
penguin	$\frac{\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}$	-	-	$\sim 35 \%$	$\sim 5 \%$
Unitarity	$\gamma\left(B \rightarrow D^{(*)} K^{(*)}\right)$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma\left(B_{s} \rightarrow D_{s} K\right)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$\beta\left(B^{0} \rightarrow J / \psi K^{0}\right)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	2.5×10^{-3}	2×10^{-4}	4×10^{-5}	-
CPV	$A_{C P}^{d i r}(K K)-A_{C P}^{d i r}(\pi \pi)$	4.3×10^{-3}	4×10^{-4}	8×10^{-5}	-

[^0]: 19th April 2011

