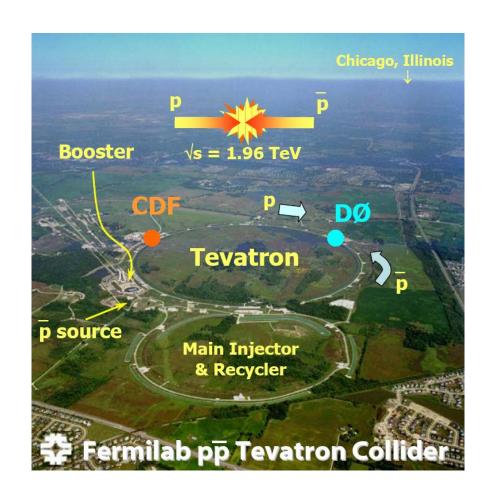


Recent Tevatron Results

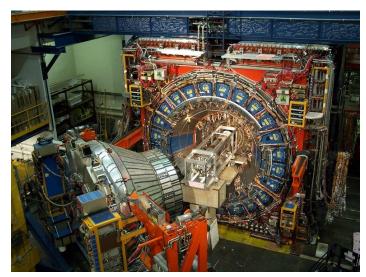
Jonathan Hays
On behalf of
CDF and DØ

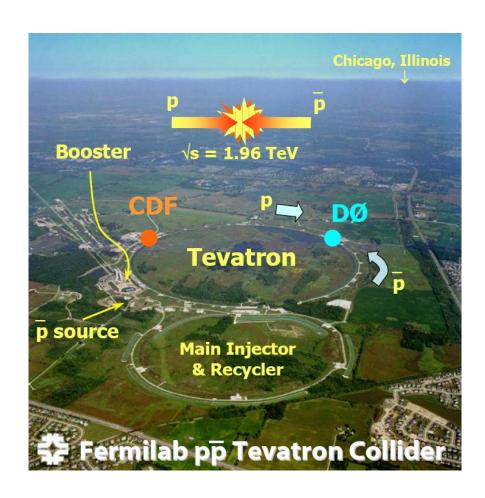
Imperial College London


Outline

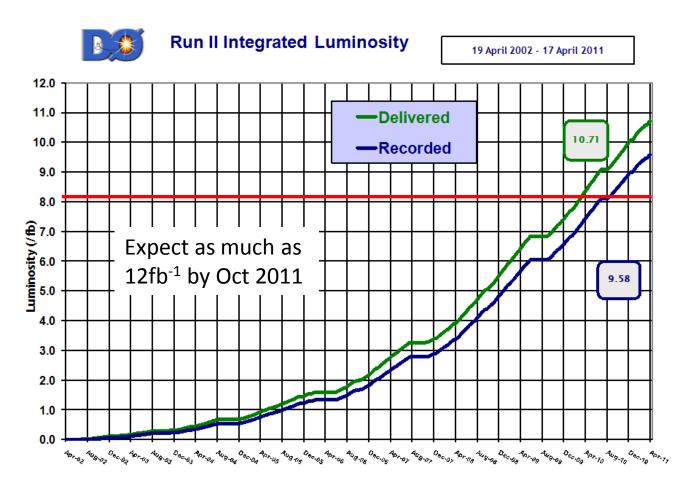
Introduction

Results


Conclusions



Tevatron, CDF, D0



Tevatron Performance

Average data-taking efficiency ~90%

Many thanks to Accelerator Division

A Wealth of Recent Results

By way of example: http://www-d0.fnal.gov/Run2Physics/ResultsWinter2011.html

Bottom Physics

Analysis	Luminosity	More Information
A measurement of B0s mixing using the flavor tagged deacay B0s->J/psi phi	6.1 fb ⁻¹	Web Page
Combination of the D0 constraints on the CP violating phase phiS	up to 6.1 fb ⁻¹	Web Page

Electroweak Physics

Analysis	Luminosity	More Information
Measurement of the Z/gamma* Z/gamma* production cross section using the fully charged leptonic decay channel from ppbar collisions at sqrt(s)=1.96 TeV	6.4 fb ⁻¹	Publication
Measurement of sin2theta_eff and Z-light quark couplings using the forward-backward charge asymmetry in ppbar>Z/gamma*>e+e- events	5.0 fb ⁻¹	Publication
Precise study of the Z/gamma* boson transverse momentum distribution in ppbar collisions using a novel technique	7.3 fb ⁻¹	Publication

New Phenomena

Analysis		More Information
Search for W'>tb resonances with left- and right-handed couplings to fermions	2.3 fb ⁻¹	Publication
Search for resonant WW and WZ production in ppbar collisions at sqrt(s)=1.96 TeV	4.1-5.4 fb ⁻	Publication
Search for single vector-like quarks in ppbar collisions at sqrt{s}=1.96 TeV	5.4 fb ⁻¹	<u>Publication</u>
Search for pair production of the scalar top quark in the electron+muon final state	5.4 fb ⁻¹	<u>Publication</u>
Search for new fermions ('quirks') at the Fermilab Tevatron Collider	2.4 fb ⁻¹	<u>Publication</u>
Search for events with leptonic jets and missing transverse energy in ppbar collisions at sqrt(s)=1.96 TeV	5.8 fb ⁻¹	<u>Publication</u>
Search for diphoton events with large missing transverse energy in 6.3 fb-1 of ppbar collisions at sqrt(s)=1.96 TeV	6.3 fb ⁻¹	Publication
Search for a heavy neutral gauge boson in the dielectron channel with 5.4 fb-1 of ppbar collisions at sqrt(s)= 1.96 TeV	5.4 fb ⁻¹	Publication

A Wealth of Recent Results

QCD Results

Analysis	Luminosity	More Information
Azimuthal decorrelations and multiple parton interactions in gamma+2 and +3 jet events in ppbar collisions at sqrt{s}=1.96 TeV	1 fb ⁻¹	Publication
A Measurement of the Ratio of Inclusive Cross Sections sigma(ppbar->Zbjet) / sigma (ppbar/Z+jet at sqrt(s) =1.96 TeV	4.2 fb ⁻¹	Publication

Top Physics

Analysis	Luminosity	More Information
Measurement of spin correlation in ttbar production using dilepton final states	5.4 fb ⁻¹	<u>Publication</u>
Search for flavor changing neutral current couplings in decays of top quarks	4.1 fb ⁻¹	<u>Publication</u>
Search for W'>tb resonances with left- and right-handed couplings to fermions	2.3 fb ⁻¹	<u>Publication</u>
Measurement of color flow in ttbar events from ppbar collisions at sqrt(s)=1.96 TeV	5.3 fb ⁻¹	<u>Publication</u>
Measurement of the top quark production cross section in the lepton+jets channel in proton-antiproton collisions at sqrt(s)=1.96 TeV	5.4 fb ⁻¹	Publication
Measurement of the W boson helicity in top quark decays using 5.4 fb-1 of ppbar collision data	5.4 fb ⁻¹	<u>Publication</u>
Determination of the width of the top quark	up to 2.3 fb ⁻	Publication
Measurement of ttbar production in the tau+jets channel using ppbar collisions at sqrt(s)=1.96 TeV	1.0 fb ⁻¹	<u>Publication</u>
Measurement of the top quark mass in final states with two leptons using the D0 detector	5.3 fb ⁻¹	Web Page

A Wealth of Recent Results

And 'finally'...

Higgs Physics

ggs i nysics		
Analysis	Luminosity	More Information
Combined CDF and D0 upper limits on standard model Higgs boson production with up to 8.2 fb-1 od data	up to 8.2 fb ⁻	Web Page
Combined upper limits on standard model Higgs boson production in the WW, tautau and gammagamma decay modes in up to 8.2 fb-1 of data from the D0 experiment	up to 8.2 fb ⁻	Web Page
Search for neutral Higgs bosons phi b>tau_e tau_had b with 3.7 fb-1 of D0 data	3.7 fb ⁻¹	Web Page
Search for a fermiophobic Higgs boson in the di-photon final state using 8.2 fb-1 of D0 data	8.2 fb ⁻¹	Web Page
Search for Higgs boson production in dilepton plus missing transverse energy final states with 8.1 fb-1 of ppbar collisions at sqrt(s)=1.96 TeV	8.1 fb ⁻¹	Web Page
Search for the Standard Model Higgs boson the tau+tau- + 2 jets final state	4.3 fb ⁻¹	Web Page
Search for the Standard Model Higgs boson in mu+tau_had+<= 1 jet final state with 7.3 fb-1 of data	7.3 fb ⁻¹	Web Page
Search for the Standard Model Higgs Boson in gammagamma+X final states at D0 using 8.2 fb-1 data	8.2 fb ⁻¹	Web Page
Search for the Standard Model Higgs boson in the ZH>vvbb channel in 6.2 fb-1 of ppbar collisions at sqrt(s) =1.96 TeV	6.2 fb ⁻¹	Web Page
Search for the standard model Higgs boson in the H>WW>lvqq decay channel	5.4 fb ⁻¹	Publication
Search for WH associated production in 5.3fb-1 of ppbar collisions at the Fermilab Tevatron	5.3 fb ⁻¹	<u>Publication</u>
Search for neutral Higgs bosons in the multi-b-jet topology in 5.2 fb-1 of ppbar collisions at sqrt(s)=1.96 TeV	5.2 fb ⁻¹	Publication
Search for ZH>llbb production in 4.2 fb-1 of ppbar collisions at sqrt(s)=1.96 TeV	4.2 fb ⁻¹	<u>Publication</u>

And likewise: http://www-cdf.fnal.gov/physics/physics.html

Complementarity

A_{FB}(top)
CP in heavy flavour decays top spin correlations
High-x gluon
W asymmetry
SUSY searches

Legacy

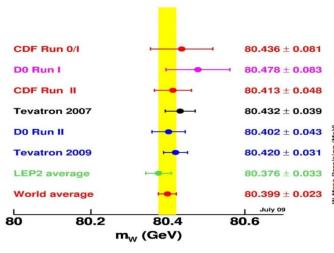
top mass top properties W mass

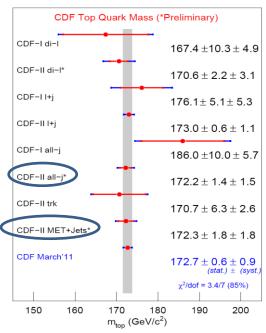
Higgs

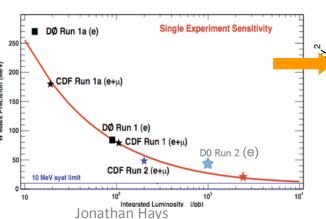
Hints & Excesses

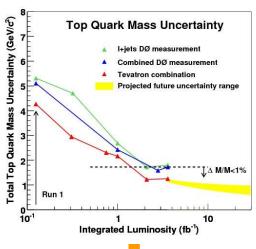
CP in B_s
t'
top resonances
W+2jets

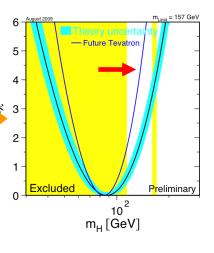
Top and W Mass



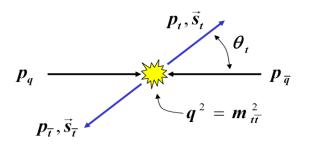

Top mass


- Current Tevatronprecision of 0.7%CDF alone now at 0.6%

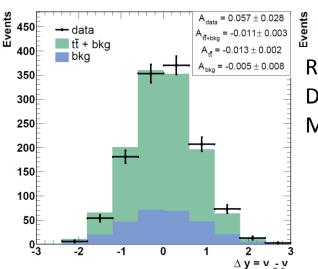

W mass


Current Tevatron precision of 31MeV

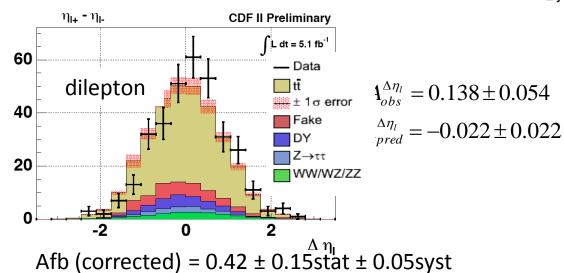
m_H<117GeV

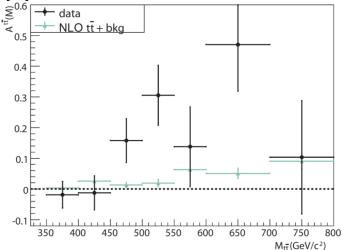


Events


Other 'Top' Results

Production Asymmetry A_{FB}


lepton+jet

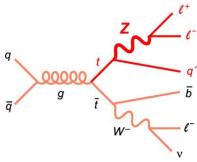


Raw A_{FR}

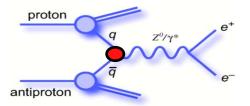
 0.057 ± 0.028 Data:

MC@NLO: 0.017 ± 0.004

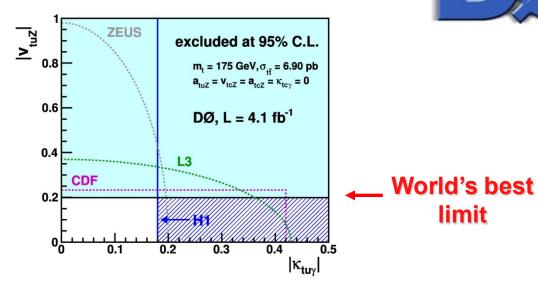
Jonathan Hays

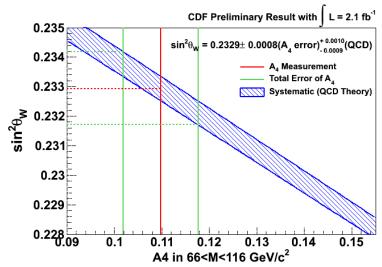


Other 'Top' & Electroweak Results



limit

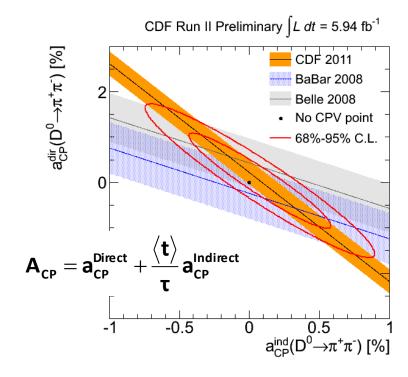

eg FCNC



eg sin $\theta_{\rm w}$

World's **best for** light quarks!

Complementarity

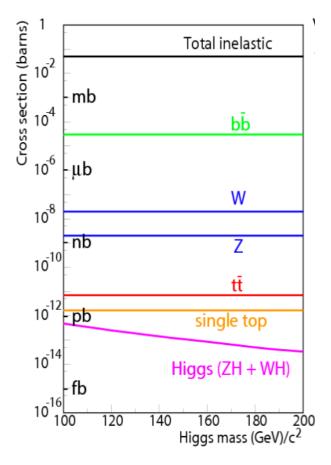


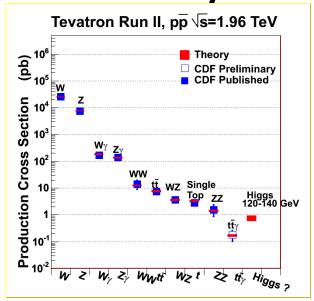
Proton-Antiproton: enables high precision CP measurements due to symmetric initial state

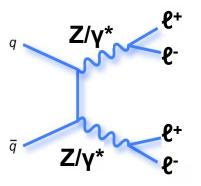
eg
$$D^0 \rightarrow K^+K^- \& \pi^+\pi^-$$

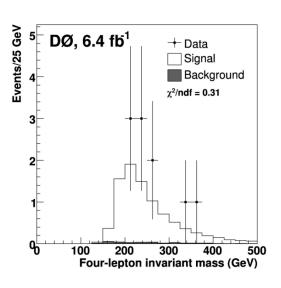
$$A_{CP} = \frac{\Gamma(D^0 \rightarrow h^+h^-) - \Gamma(\overline{D}^0 \rightarrow h^+h^-)}{\Gamma(D^0 \rightarrow h^+h^-) + \Gamma(\overline{D}^0 \rightarrow h^+h^-)}$$

 $A_{CP}(D^0 \rightarrow \pi^+\pi^-) = +0.22\pm0.24\pm0.11\%$








Alternatively...

 $\sigma(ZZ) = 1.35 \pm 0.45(stat) \pm 0.15(syst) pb$

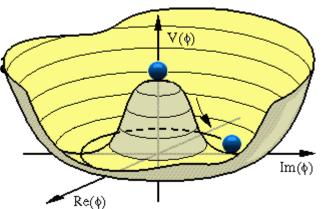
Standard Model Higgs

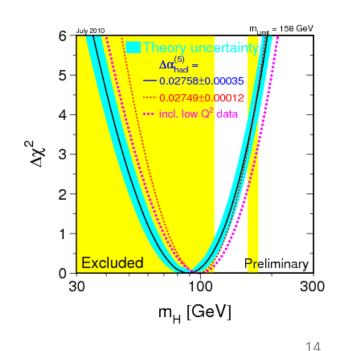
Higgs mechanism

Additional scalar field in SM Lagrangia

→ mass to W,Z & fermions

Predicts neutral, spin 0 boson

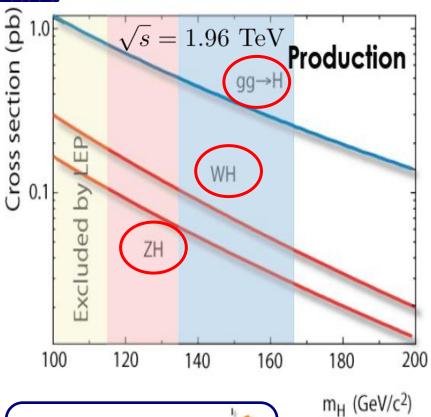

But not its mass

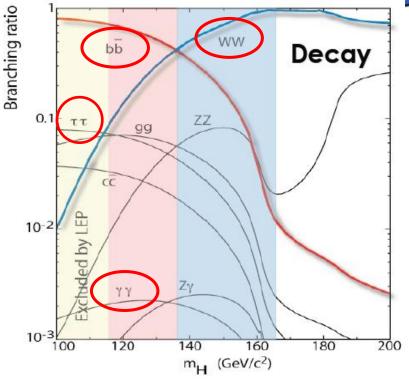


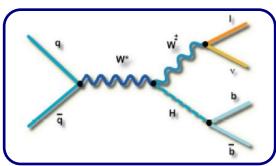
Precision data favour a light Higgs $m_H < 185$ GeV if LEP2 limit included

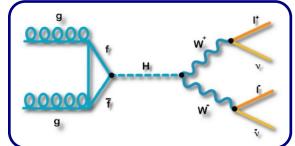
→ Accessible at Tevatron

(Not finding the Higgs boson will contradict SM & revolutionize particle physics...)

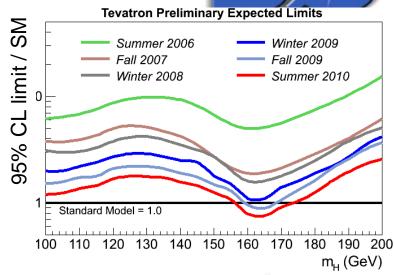


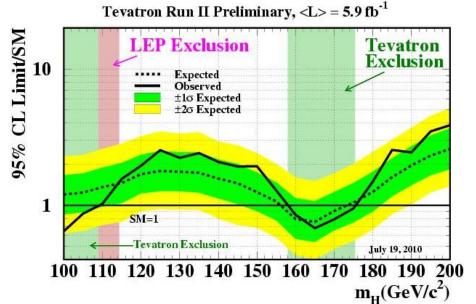

Jonathan Hays




Higgs at the Tevatron

Strategy: Leave no stone unturned


All signal production and decay processes
eg W/Z+H and qqH at high mass
eg photons & taus, hadronic decays of W's


Optimise leading channels eg b-tagging & mass resolution at low mass

Constrain systematics with data

Improved final discriminants
eg neural networks, boosted
decision trees...

Combine across all channels & experiments

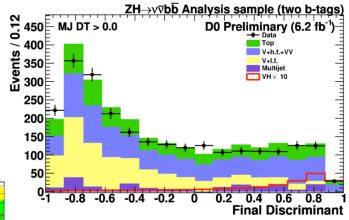
Jonathan Hays 16

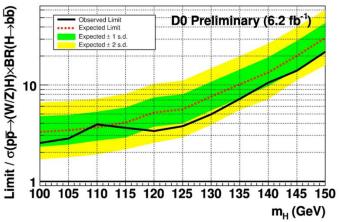
Low Mass: ZH→vvbb

Missing transverse energy

One of most powerful, but challenging channels

Two high p_T jets, acoplanar, b-tagged


Improved use of b-tagging information 15% gain in sensitivity


Boosted decision trees

To reject multijet background

As final discriminant

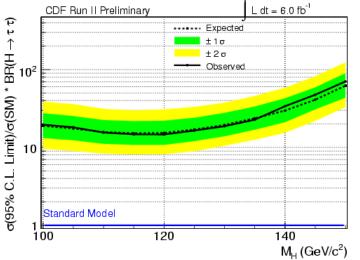
Split into 1 and 2 b-tag samples

m_H=115 GeV, 95% CL

Expected: 4.0×SM

Observed: 3.4×SM

Jonathan Hays 17

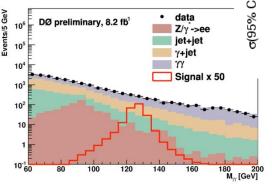


'Low' Mass: Additional channels

 $H \rightarrow \tau \tau$

2nd largest BR at low mass Tau pair + 1or 2 jets

m_H=115 GeV

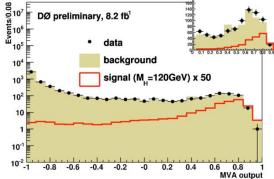

Expected: 15×SM

Observed: 15×SM

Observed limit

Expected limit Expected limit \pm 1 s.d. Expected limit \pm 2 s.d.

130



 $H \rightarrow \gamma \gamma$

More data

Boosted decision tree

~30% gain in sensitivity

Jonathan Hays

m_H=115 GeV:

30

95% CL σ x BR(γγ)/SM value

Expected: 11×SM

110

120

DØ preliminary, 8.2 fb1

Observed: 20×SM

150 M_{γ/} [GeV]

140

High Mass New high mass combination for winter 2011

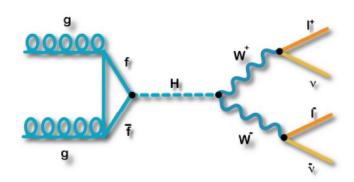
All channels updated / improved

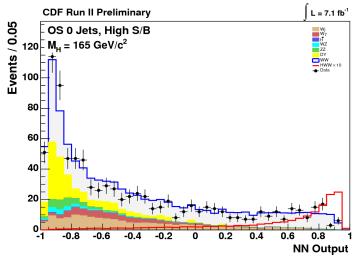
CDF

New channels

Channel	Luminosity (fb^{-1})	m_H range (GeV/c^2)
$H \to W^+W^- 2 \times (0.1 \text{ jets}) + (2 + \text{ jets}) + (\text{low-}m_{\ell\ell}) + (e - \tau_{had}) + (\mu - \tau_{had})$	7.1	130-200
$WH \to WW^+W^-$ (same-sign leptons 1+ jets)+(tri-leptons)	7.1	130-200
$ZH \to ZW^+W^-$ (tri-leptons 1 jet)+(tri-leptons 2+ jets)	7.1	130-200

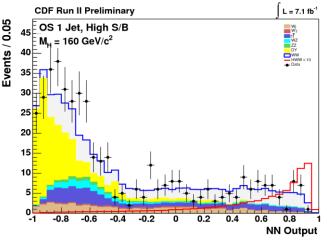
D₀

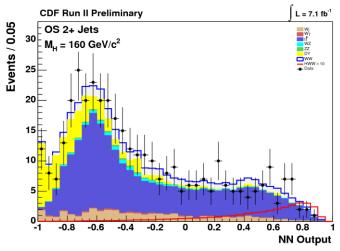

Channel	Luminosity (fb^{-1})	m_H range (GeV/c^2)
$H \to W^+W^- \to \ell^{\pm}\nu\ell^{\mp}\nu (0,1,2+ \text{ jet})$	8.1	130-200
$H \to W^+W^- \to \mu\nu\tau_{had}\nu$	7.3	130-200
$H \to W^+W^- \to \ell \bar{\nu} jj$	5.4	130-200
$VH \to \ell^{\pm}\ell^{\pm} + X$	5.3	130-200
$H+X\rightarrow \ell^{\pm}\tau_{had}^{\mp}jj$	4.3	130-200
$H \to \gamma \gamma$	8.2	130-150



$H+X \rightarrow l^+l^- + \text{missing E}_T$

 $m_H>135$ GeV, $H\rightarrow W^*W$ dominates Clean - use gg \rightarrow H production

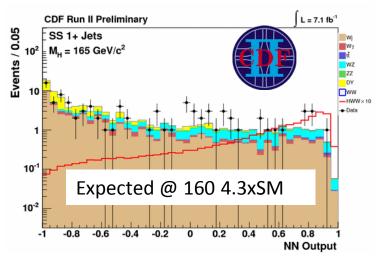

W/Z+H, qqH also contribute

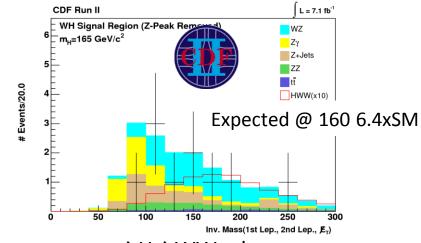

Subdivide

By jet multiplicity

lepton quality

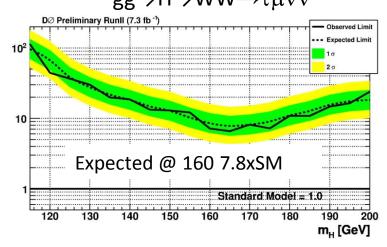
Use MVA
With differing inpu

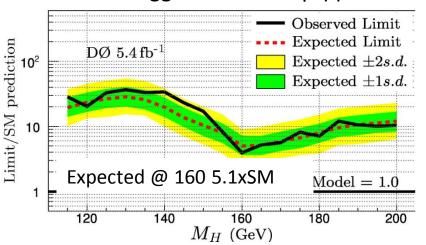




Limit / σ ($p\bar{p} \rightarrow HX) \times BR(HX \rightarrow \mu\tau)$

Additional Channels W/Z H same sign dilepton Trileptons: WH





gg \rightarrow H \rightarrow WW \rightarrow τ μ νν

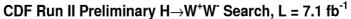
Combination

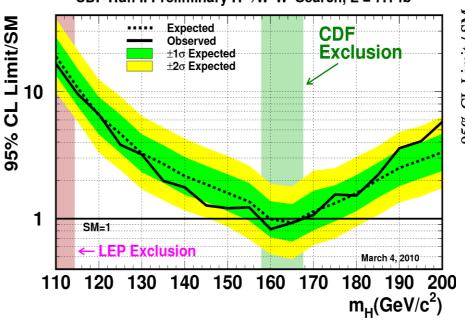
Two statistical approaches
Agree better than 5% over all masses
Operate on binned final discriminants
Systematics (& correlations) included
Rate and shape effects considered
Impact mitigated with constraints from data

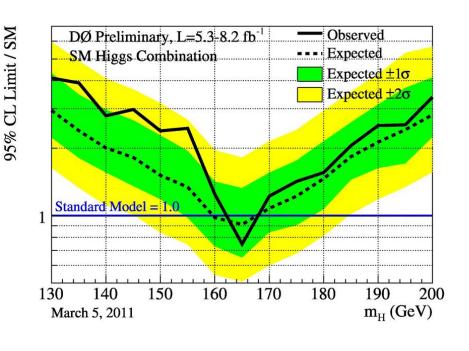
gg→H: NNLO +NNLL arXiv:0811.3458, arXiv:0901.2427

Use MSTW2008 NNLO PDFs
Error prescription from PDF4LHC

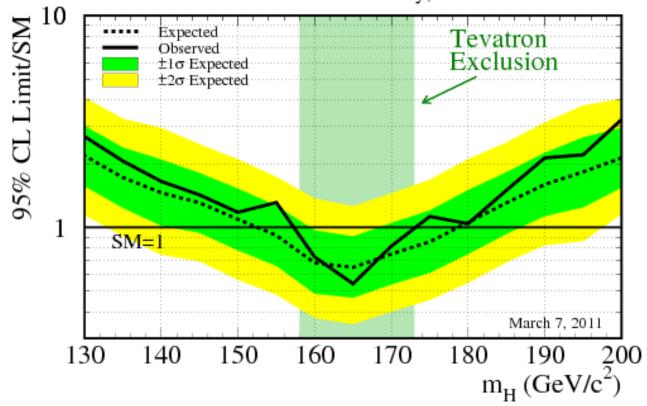
Errors evaluated by jet bin


Further details on combinations: http://tevnphwg.fnal.gov





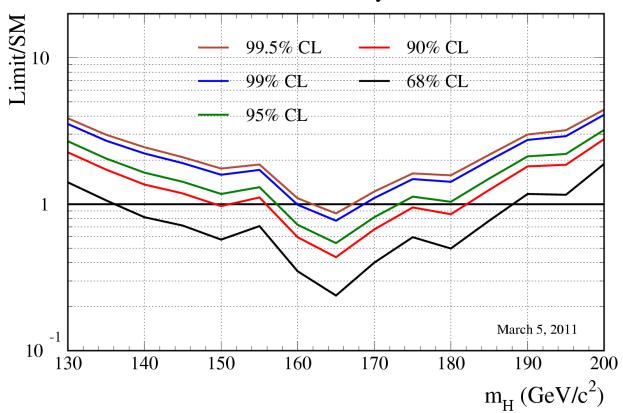
By Experiment


- Exclusion by each experiment:
 - CDF: excludes SM Higgs for $158 < m_H < 168 \text{ GeV}$
 - -DØ: excludes SM Higgs for 163 < m_H < 168 GeV

Tevatron

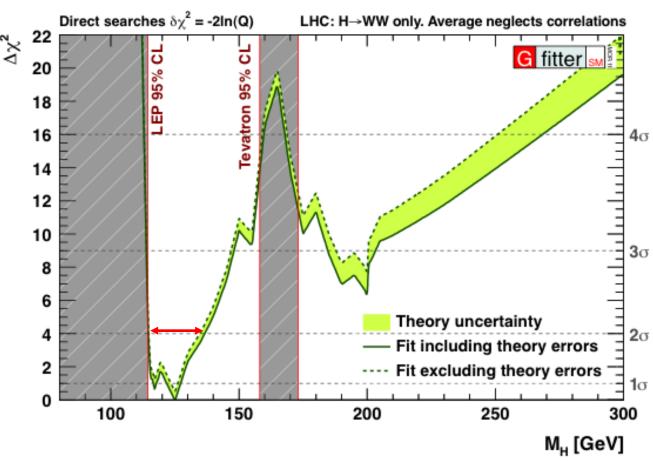
Tevatron Run II Preliminary, L ≤ 8.2 fb⁻¹

SM Higgs excluded at 95% CL for $158 < m_H < 173 \text{ GeV}$


Expected exclusion at 95% CL $153 < m_H < 179 \text{ GeV}$

Tevatron

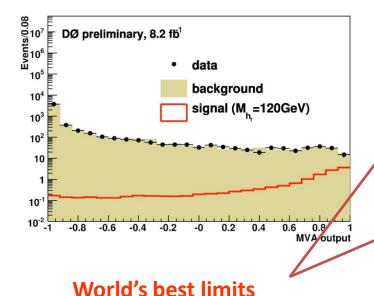
Tevatron Run II Preliminary, $L \le 8.2 \text{ fb}^{-1}$

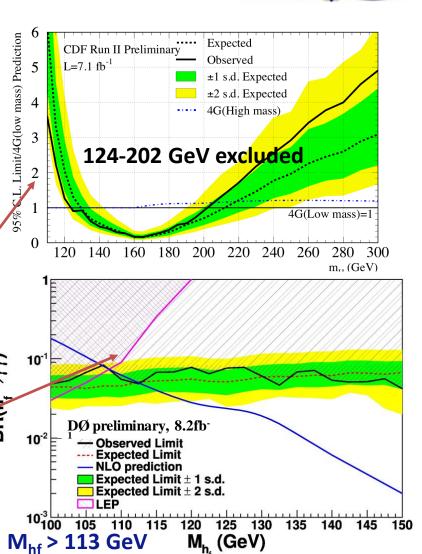

SM Higgs excluded at 99.5% CL for $162 < m_H < 166 \text{ GeV}$

Combining Direct & Indirect Limits

At 95% CL: Allowed region <140GeV

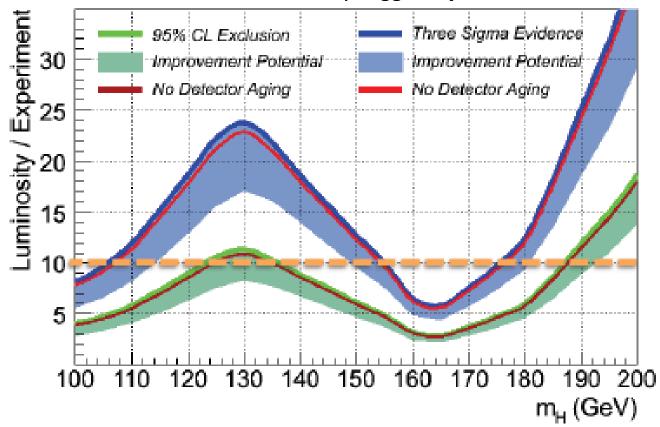
Gfitter: combines direct and indirect constraints




Higgs Beyond the SM...

Wide range of searches

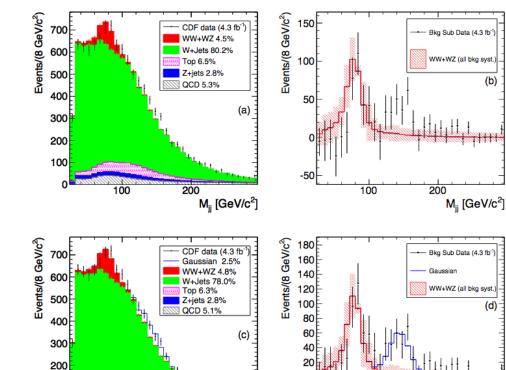
MSSM, NMSSM, Fermiophobic, 4 Generations



SM Higgs Prospects

Ongoing programme of improvements

Tevatron: Preliminary Higgs Projection


Expect exclusion over whole mass range

100

W+2jets @ CDF

200

M_{ii} [GeV/c²]

Interesting excess seen in di-jet invariant mass distribution

If real – exciting sign of new physics

D0 has similar analysis – repeating with CDF-like cuts Expect results in a couple weeks

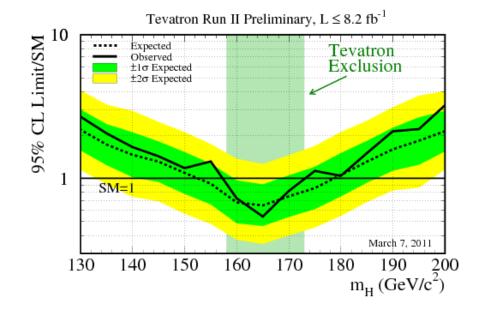
M_{ii} [GeV/c²]

100

Conclusions

Tevatron and CDF/ DØ experiments continue to perform very well

Wealth of new results


Across many areas

High mass Higgs combination

Observed: $158 < m_H < 173 \text{ GeV}$

Expected: $153 < m_H < 179 \text{ GeV}$

Single experiment exclusion

Many new results soon

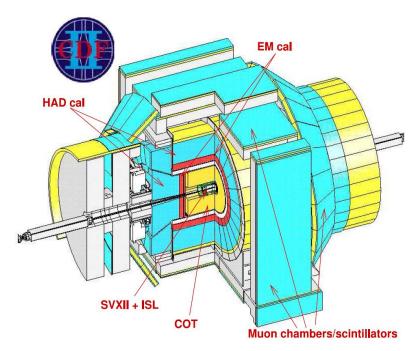
eg BSM Higgs combination, full mass SM Higgs combination eg Updated W mass, Muon CP asymmetry

Stay tuned: Tevatron at its best!

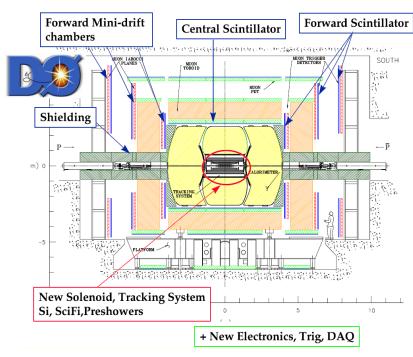
Thank you

Jonathan Hays 30

Backup slides



CDF and DØ Experiments

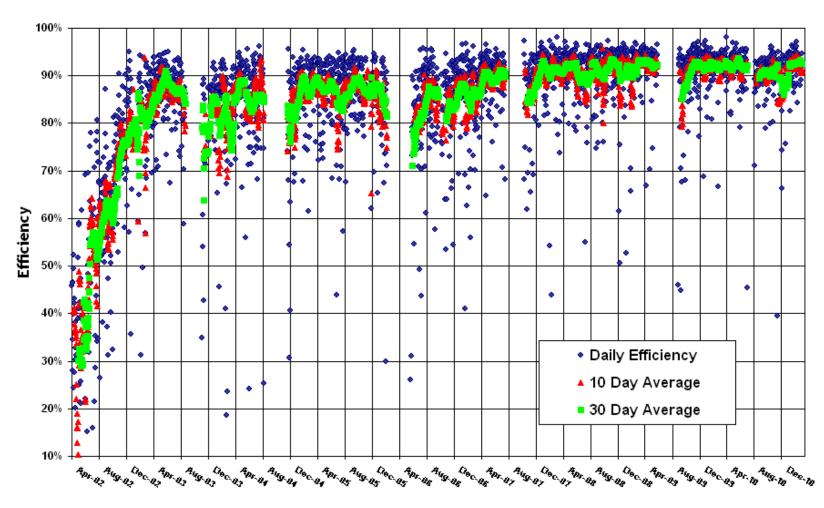


Both detectors extensively upgraded for Run IIa

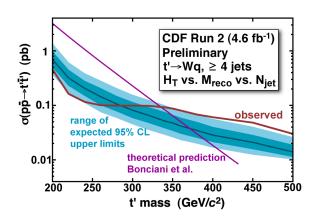
New silicon vertex detector New tracking system Upgraded muon chambers

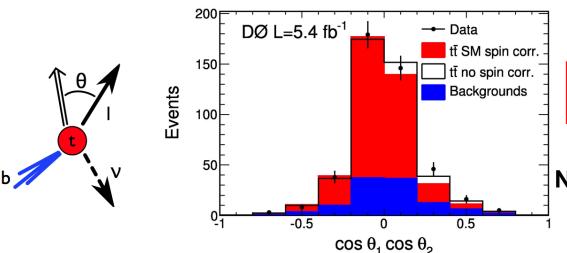
CDF: New plug calorimeter & ToF

- DØ
 - New solenoid & preshowers
 - Run IIb: New inner tracking layer& L1 trigger


NM Nata Taking

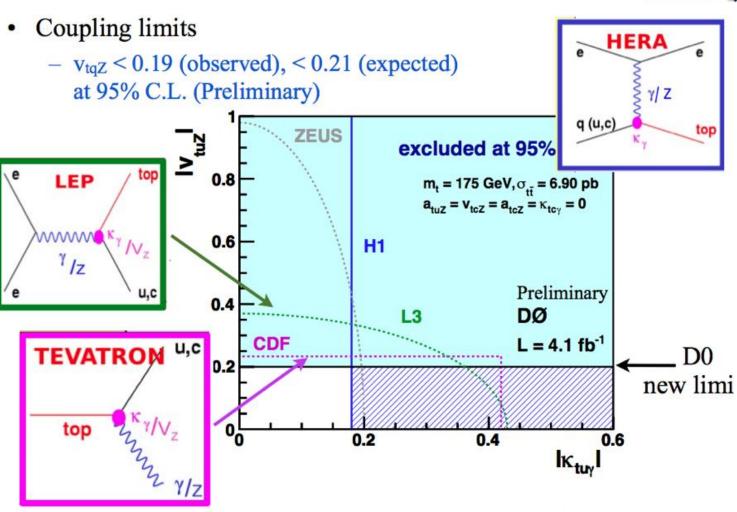
Daily Data Taking Efficiency


19 April 2002 - 20 March 2011


Other 'Top' Results

CDF Run 2 (5.6 fb⁻¹) σ(pp→t't̄') (pb) .0 **Preliminary** t'→Wb, ≥ 4 jets H_T vs. M_{reco} vs. N_{iet} observed 95% CL upper limit range of expected 95% CL upper limits 0.01 theoretical prediction Bonciani et al. 350 300 400 200 250 450 500 t' mass (GeV/c2)

eg spin-correlations

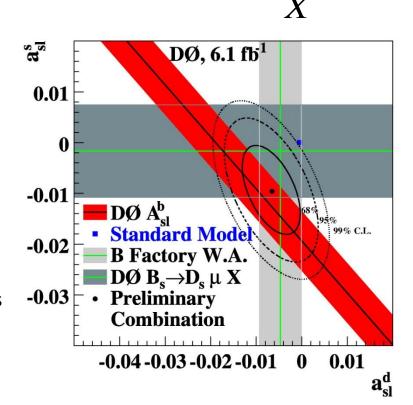

$$C = 0.10^{+0.45}_{-0.45} (\text{stat+syst})$$

NLO QCD:
$$C = 0.777^{+0.027}_{-0.042}$$

FCNC

CP Muon Asymmetry

 \overline{B}

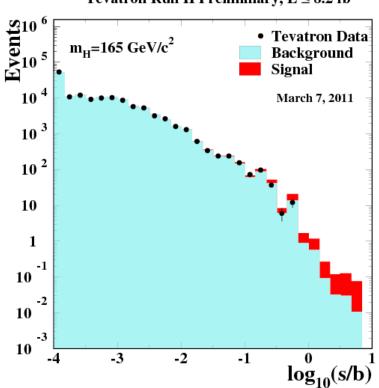

 B^0

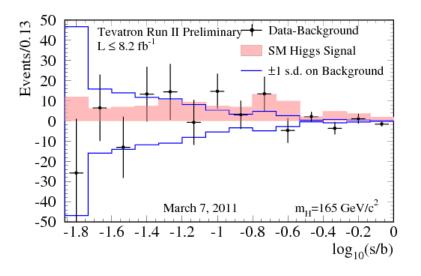
$$A_{sl}^{b} \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

$$A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$a \equiv \frac{n^+ - n^-}{n^+ + n^-}$$

 N^{++} , N^{--} : number of events with two like-sign dimuons n^{+} , n^{-} : number of muons with given charge

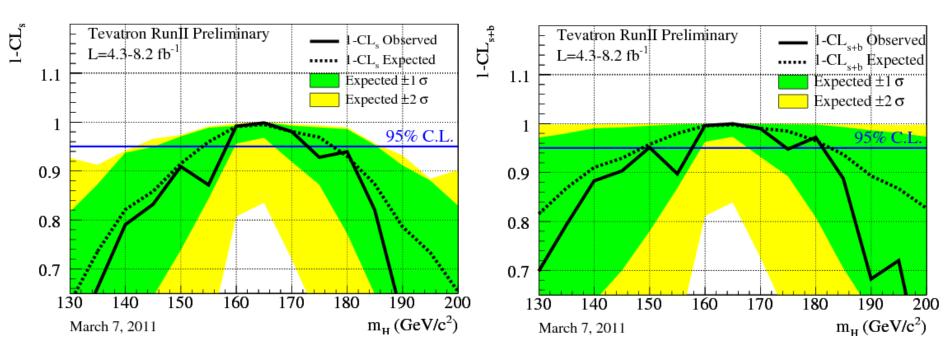



Tevatron High Mass Combination

Tevatron Run II Preliminary, $L \le 8.2 \text{ fb}^{-1}$

With background subtraction

Agreement between background model and data very good



CL_s and CL_{s+b}

 $CL_s = CL_{s+b}/CL_b$

 CL_{s+b}

Same exclusion ranges as Bayesian approach