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OVERVIEW |

Review of standard BSM fitting methods

Fast likelihood evaluation: neural networks

Fast and reliable parameter space exploration: nested sampling
Application to SUSY phenomenology

The future: BAMBI

Conclusions



BASICS OF (BAYESIAN) DATA ANALYSIS

e Collect a set of IV data points D; (« = 1,2,..., N), which we denote collectively as
the data vector D.

e Propose some model (or hypothesis) H for the data, depending on a set of M
parameters 0, (j = 1,..., M), that we denote by the parameter vector 6.

e Apply Bayes’ theorem

Pr(D|0,H)Pr(6|H) P(9) = L(O)7(0)

Pr(@|D. H) = >
(61D, H) Pr(D|H) E

e Parameter estimation: posterior P(60) is complete inference

e Model selection: for H; (1 = 0, 1), the probability density associated with D is

B = [ Li0)m,(0) do
then consider ratio
Pr(Hild) Ej Pr(Hp)
Pr(Hold)  Eg Pr(Hp)




BSM CASE STUDY: CMSSM |

Consider restricted class of SUSY models with certain universality assumptions
regarding SUSY breaking parameters: cMSSM

Model defined by 4 free parameters:

0 = {m07 m1/27 A07 tan 5}7
l.e. the common scalar (mg), gaugino (ml/z) and tri-linear (Ap) mass
parameters (all specfied at GUT scale) plus ratio of Higgs VEVs tan 5. We fix
sign( ) to be positive, where 1. is Higgs/higgsino mass parameter whose square is
computed from conditions of radiative EWSB.

Also have 4 ‘nuisance’ parameters from Standard Model that enter calculation of
the observable quantities:

W = { My, my(mp) M5, as(Mz)MS | aem(M4) M5},

where M, is pole top quark mass and mb(mb)M—S is bottom quark mass at m,
while as(M»)M5 and cem (M, )MS are strong and electromagnetic coupling
constants at Z pole mass M (evaluated in MS scheme).

Denote full 8D parameter space by © = (6, )



PROBLEMS WITH STANDARD APPROACH I

e Slow likelihood evaluation
Likelihood evaluation in SUSY particle model analysis involves computation of
mass spectrum via iterative solution of renormalization group equations (RGES).

Current public numerical codes reach ~ few % precision and are implemented up
to two-loop level, with calculation of physical masses involving, at least, full
one-loop radiative corrections

= typical run time for spectrum calculator ~ few secs per model point

Also, parameter spaces have unphysical regions (tachyonic solutions and/or EWSB
not fufilled), evenly spread across some projections of 6 parameter space
— testing and discarding unphysical points leads to large timing ineffciencies

2.6

log(m; ,/GeV)?



PROBLEMS WITH STANDARD APPROACH I

e Slow exploration of parameter space
Traditional procedure is to evaluate likelihood function on a fixed grid, often
encompassing only 2 or 3 dimensions at the time
= number of likelihood evaluations scales exponentially with no. of parameters
= impractical for full exploration of cMSSM parameter space

More recently new approaches based on both Frequentist and Bayesian statistics
coupled with Markov Chain Monte Carlo (MCMC) methodology have been applied.
The effciency of the MCMC techniques allow for a full exploration of
multidimensional models, but still require 10°—10' parameter points sampled
= full analysis requires ~ few x 100 days CPU time

= perform analysis in ~ 1-2 weeks on supercomputer depending on Ncpyy
available (x2 — 3 for ‘naughty user ranking’, queues, etc...)

AND. .. x ~ 10 for model selection using MCMC thermodynamic integration



PROBLEMS WITH STANDARD APPROACH I

e Incomplete exploration of parameter space
Likelihood function of these models is complex and multimodal with many narrow

features, making the exploration task with conventional MCMC methods
challenging often with low sampling effciency




1: Neural networks; fast likelihood
evaluation



MULTI-LAYER PERCEPTRON NEURAL NETWORKS I

e MLP = feed-forward network composed of ordered layers of perceptrons

e Consider 3-layer MLP here: input layer, hidden layer and output layer

\/é%\ /gg\/ hidden layer: h; = g(l)(fj(l)); fj(l) - Zw§ll)$l + b§1),
[

. 6 ©o
output layer: vy; = g(2)(fz-(2)); fi(z) = Zwi(f)hj + b§2),
l

e Use non-linear activation function (g; () = tanh x) on outputs of all hidden layer
neurons; use g>(x) = x

e Any Lo-function f : k"™ — R, can be approximated to arbitrary mean square
error accuracy by a 3-layer MLP



NEURAL NETWORK APPROACH TO BSM PHYSICS |

Any analysis of cMSSM parameter space must relate model parameters © to
observable quantities, such as the sparticle mass spectrum m at the LHC

One can view RGEs (e.g. SOFTSUSY) simply as a mapping from © — m and
engineer a computationally efficient representation of this function

Vast literature on multivariate function approximation, including neural networks,
radial basis functions, support vector machines and regression trees

Neural networks accurate and easy: random training data, scale linearly with
dimension

Regression 3-layer neural network: input layer x = ©; output layer y = m



CcMSSM MODEL ‘LEARNED’ |

e 8-parameter model in neighbourhood of SUSY benchmark point

CMSSM parameters:
log(50) < logmyg,logmy/s (GeV) < log(500)
—4 < Ag (TeV) < 4
2 < tan 3 < 62
SM nuisance parameters: 1
3.92 < M; < 4.48
163.7 < my(mp)M? < 178.1
0.1096 < cvepm (Mz)M5 < 0.1256

127.846 < ay(Mz)MS) < 127.99

e Easily applicable to other regions of parameter space, e.g. focus point

e Now extending representation to wider parameter ranges



REGRESSION NEURAL NETWORK TRAINING I

Training data: D = {©") m(k)}
— randomly select ~ 4000 points ©%) in box in cMSSM parameter space
— calculate corresponding sparticle mass spectra m (%) using SOFTSUSY

Maximise log-likelihood (misfit) with respect to network parameters a = (w, b):

L(a)=—-53>" [mz““) — 5 (0W); ) i
k 1

Highly non-linear function in 1000s of dimensions =- use MEMSYS optimiser on:

F(a) = L(a) + aS(a)

Increments o down the maximum entropy trajectory (starting from oo = oo) until the
error term dominates; trains in ~ 10 mins with 10 hidden nodes (max evidence)

Create separate test data to evaluate accuracy

11
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Comparison of SOFTSUSY and NN
mass specira

All mass spectrum components have
correlation coefficients > 0.9999
Typical CPU time for each NN mass
spectrum calculation ~ few x 10~ % s
Factor of ~ 10% speed-up over SOFT-
Susy full RGE solution
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CLASSIFICATION NEURAL NETWORK I

e cMSSM parameter space has unphysical regions spread evenly across it
= testing and discarding unphysical points leads to large timing ineffciencies
— train classification neural network to identify physical and unphysical points

e Train 3-layer NN: input layer = ®; output layer p, = % (SoftMax)
j

= output p; gives probability of input vector belonging to :th-class

e Training data: D = {©(F) ¢(k)}
— kth target vector ¢(*) has unity in class of kth input vector © (%) and zeroes elsewhere
— randomly select ~ 30000 points ©®*) in box in cMSSM parameter space

e Network training as before but using £(a) = > 1. >, t,gk) |ﬂpi(@(k); a)

: e ROC curve plots true positive rate (TPR) vs

| false positive rate (FPR) as a function of
classifier threshold pip,.

e Defines (high) quality of the resulting NN bi-
nary classifier

TPR

0.4

0.2

FPR



2: Nested sampling: fast and reliable
parameter space exploration

14



SOME (COSMOLOGICAL) POSTERIORS

e Some posteriors are nice, others are nasty
@ 0@ 5
0.90 ‘ .
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—4.099x10*

In10'° A

oo o, o * @, o e ¢ 'rlrs o 0 ns'00 x (pixels)
ACDM: 0 = (wp, we, 0, 7,In A, ng) Detecting SZ clusters in CMB:
using CMB+SDSS+HST data 0= (X,Y,A R)
(Trotta 2004) (Hobson & McLachlan 2003)

e Posterior exploration (parameter estimation) and integration (model selection)
traditionally performed using MCMC sampling
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METROPOLIS—HASTINGS ALGORITHM I

e Metropolis—Hastings algorithm to sample P(6):
— start at arbitrary point 6
— at each step draw trial point 8’ < Q(60'|6,,) from
proposal distribution
— calculate ratio r = P(0")Q(0,|0")/P(6,)Q(0'|6,,)
— ifr > 1 accept 0,,+1 = 0';
if » < 1 accept with probability r, else 6,, 1 = 05,

e Implementation of basic MH algorithm is trivial:

Initialise 6g; setn = 0
Repeat |
Sample a point 8’ from Q(-|6x)
Sample a uniform [0,1] random variable U
fU < a(0',0,)set,,1 =06 else,,1 =06,
Increment n]

e After initial burn-in period, any (positive) proposal () = convergence to P(0)

e Common choice for () is multivariate Gaussian centred on 6,, (CosmoMCQC)
16



METROPOLIS—HASTINGS ALGORITHM: SOME PROBLEMS I

But... choice of ) strongly affects rate of conver-
gence and sampling efficiency.

Large proposal width € =- trial points rarely accepted
Small proposal width ¢ = chain explores P(60) by a
random walk — very slow

If largest scale of P(0) is L

— typical diffusion time ¢t ~ (L /¢)?

If smallest scale of P(0) is ¢

= need e ~ ¢ = diffusion time ¢ ~ (L /¢)?

Particularly bad for multimodal distributions
Transitions between distant modes very rare

No choice of proposal width ¢ works

Standard convergence tests will suggest converged,
but actually only true in a subset of modes

17



METROPOLIS—HASTINGS ALGORITHM: SOME PARTIAL FIXES I

e Set proposal width ¢ by trial and error to achieve acceptance ratio ~ 0.5, or
dynamically during burn-in, but must fix thereafter

e Multiple (non-interacting) chains sometimes useful

e Annealing schedules or multi-temperature chains

e Several sequential proposals: each updating only some parameters

e Innovative proposals, e.g Gibbs, Hamiltonian, slice sampling, genetic algorithms, ...

e Compound proposal: multiple proposals ); each chosen at random with probability p,

e Use of multiple interacting chains, e.qg.

leapfrog cross-walk guided-walk
9/:26p—9n 9/:00—'_9[)’_0?1 9/:0n+(0p—0p/)

18



NESTED SAMPLING |

Area E

New technique for efficient evidence evalua-
tion (and posterior samples) (Skilling 2004)

Define X ()\) = /L PRRIOL:

Write inverse L(X),i.e. L(X(\)) = A

Evidence becomes one-dimensional integral

E = /L(H)w(@)d@ — /OlL(X)dX

Suppose can evaluate L; = L(X;) where
O< Xm << Xo< X1 <1
= estimate £ by any numerical method

m
j=1

(w; = 5(X;_1 — X;4.1) for trapezium rule)

19
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Nested sampling approach to summation:
1. Seti = O;initially Xo = 1, E = 0

. Sample N points {6} randomly from 7(6)

and calculate their likelihoods

. Seti — 141
4. Find point with lowest likelihood value (L;)

. Remaining prior volume X, = t,X;_1 where

Pr(t;|N) = Nt;¥ 1
orjustuse (t;,) = N/(N + 1)

. Increment evidence £ — E + L;w;
7. Remove lowest point from active set
8. Replace with new point sampled from 7 (8)

within hard-edged region L(0) > L;

. If LmaxX; < aFZ (where some tolerance)

= F — E+ X; Zé\le L(6,)/N; stop

else goto 3

20



log L

Advantages:

— typically requires around few 100 times fewer samples than thermodynamic
integration to calculate evidence to same accuracy (plus error estimate)

— does not get stuck at phase changes like thermodynamic integration

log L

log X log X A

(@) (b)

Bonus: posterior samples easily obtained as
a by-product. Simply take full sequence of
sampled points 6 ; and weight jth sample by
pj = ijj/E, e.g.

no = 2. piQ0;),

J
05 Z(ij(Oj) — 11g)?
J

e As )\ : O — 1 annealing should
track along curve

dlogL __ 1 :
e But dlog X — —» S0 annealing

schedule cannot navigate
convex regions (phase changes)

21



PRACTICAL CONSIDERATIONS I

e Most challenging task: at each iteration : must replace removed point with one
sampled from 7(0) within complicated, hard-edged region L(0) > L;

e Simple MCMC using Metropolis—Hastings possible, but can be inefficient

e Mukherjee et al. (2005) fit ellipsoid to active points, enlarge to try to account for
non-ellipsoidal likelihood contour, and sample within it using simple, exact method

e Demonstrated high-efficiency and robustness on simple unimodal cosmological
posteriors (~ 100 times faster evidence evaluation cf. thermodynamic integration)

e But... still problematic for multimodal/ degenerate posteriors o0
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MULTIMODAL NESTED SAMPLING — MULTINEST I

e Introduced by Feroz & MPH (2008), refined by Feroz, MPH & Bridges (2008)

e At each nested sampling iteration ::

— construct optimal multi-ellipsoidal bound for each cluster (variable ellipsoid humber),
or evolve existing decomposition via scaling (fast)

— determine ellipsoid overlaps using cheap exact algorithm (Alfano et al. 2003)

— remove point with lowest L; from active points; increment evidence

— pick ellipsoid randomly and sample new point with . > [;, accounting for overlaps

e MULTINEST algorithm usefully (and easily) parallelized
28



IDENTIFICATION OF MODES I

2R0
2o
150 -8
100 H
&0 .

=

e For multimodal posteriors, useful to identify which samples ‘belong’ to which mode

e For well-defined ‘isolated’” modes:
— can make reasonable estimate of posterior mass each contains (‘local’ evidence)
— can construct posterior parameter constraints associated with each mode

e Partitioning and ellipsoids construction algorithm described above provides
efficient and reliable method for performing mode identification
= ‘local’ evidence and parameter constraints for each isolated mode

— sum of local evidences equals ‘global’ evidence -



3: Application to SUSY phenomenology
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NEURAL NETWORKS AND MULTINEST IN SUSY PHENOMENOLOGY |

e MULTINEST applied to cMSSM and pMSSM (by us)
(see arXiv:0807.4512, arXiv:0809.3792, arXiv:0903.2487, arXiv0904.2548,
arXiv0906.0957, arXiv:1101.3296)

e In all cases, MULTINEST is few x 100 more efficient than MCMC

e NNs and MULTINEST in cMSSM around benchmark point (arXiv:1011.4306)

Bridges et al (2010) Bridges et al (2010)
30— e
[ 68%, 95% contours ] 60r 68%, 95% contours 7]
Black: SuperBayeS pdf - [ Black: SuperBayeS pdf ]

Blue: Neural Network ] [ Blue: Neural Network N
# true value - 50- # true value 4

40F
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T 30
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e Speeds up analysis by factor ~ 10° (NN by ~ 10% and MULTINEST by ~ 102)

= original SOFTSuUSY + MCMC = 720 CPU days; NN + MULTINEST = 1 minute
31



CALCULATION OF PROFILE LIKELIHOOD (FOR FREQUENTISTS!)

Bayesians believe in posterior mass
— MULTINEST produces samples drawn according to full 8D posterior ® = (0, )
— calculate marginalised posteriors for parameters of interest

P(9) = [ P(8,4) dy

Frequentists believe in likelihood global maximum
= calculate profile likelihood for parameters of interest

_ L(8,7)
MO =10, %)

where fp is conditional MLE with @ fixed, and @ and ) are unconditional MLEs

Standard MULTINEST configuration good for accurate reconstruction of Bayesian
posterior (spikes unimportant), BUT profile likelihood poorly approximated

Require more live points and later termination criterion

— allows MULTINEST to explore high-likelihood regions (including spikes)

= significantly better approximation to profile likelihood than latest genetic
algorithm method, particularly near boundaries of the interval 32



CALCULATION OF PROFILE LIKELIHOOD (FOR FREQUENTISTS!)

e MULTINEST Bayesian marginalised posteriors and profile likelihoods in cMSSM

m_ (TeV)

m_ (TeV)

tanp

1
m, ., (TeV)

33



4: The future: BAMBI. ..
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BLIND ACCELERATED MUTLIMODAL BAYESIAN INFERENCE (BAMBI)

e General Bayesian inference engine with wide applicability: only requires choice of
priors on the parameters in model

e Combines neural networks and nested sampling in complementary manner

e Basic idea is as follows:
— early stage (prior-driven) nested samples = (incremental) training data set
— simultaneous training of neural network = ‘learn’ likelihood function
— clustering in nested sampler = accelerates network training

— once trained, network replaces likelihood code
= completes posterior sampling and evidence evaluation extremely rapidly

— trained likelihood network available for subsequent analyses

35



CONCLUSIONS |

Standard Bayesian or Frequentist analyses can be very computationally intensive:
days—weeks on a supercomputer

Large speed-ups possible using neural networks for model prediction

Efficient and robust parameter space exploration provided by nested sampling
— MULTINEST allows sampling from multimodal/degenerate posteriors
— typically few x 100 times more efficient than standard MCMC

These methods should be useful in a wide range of physical inference problems;
already applied in many areas

COSMONET and MULTINEST code publically available from:
WWw.mrao.cam.ac.uk/software/cosmonet
WWw.mrao.cam.ac.uk/software/multinest

BAMBI in development. ..

36



Supplementary slides
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ADVANTAGES OF COSMONET |

Simplicity: provides single, simple, closed-form function for each interpolation over
entire parameter space

Memory usage: a network with /V; input nodes, NV, hidden nodes and No output
nodes has (N; + 1)Ny + (N + 1) No ~ N, No parameters. For above model,
requires only ~ 50 kB of parameter memory

Accuracy: excellent after only ~ few mins of training on single 2GHz CPU

Speed: number of calculations to perform feed-forward network mapping is
2N; N, + 2NNo =~ 2NNy . In above example, calculation of €', spectrum in ~
20 microseconds, and WMAP likelihood in ~ 5 microseconds

Scaling: Ny increases at worst linearly with V;

38



UNIT HYPERCUBE SAMPLING SPACE I

Algorithm for partitioning active points into clusters and constructing ellipsoidal
bounds requires uniformly distributed points

MULTINEST ‘native’ space = D-dimensional unit hypercube in which samples are
drawn uniformly. All operations are carried out in this space (cf. BAYESYS).

To conserve probability mass, point v = (wq,u>, -+ ,up) in unit hypercube
transformed point ® = (61,05, --- ,60p) in ‘physical’ parameter space, such that

/7r(01,02,--- 05)dOy dbs - - = /dulduz---duD

In simple case that prior separable: 7(©) = 71 (01)7>(6>) ---7wp(6p), set
m;(0;)d0; = du; = for given u;, find 6, by solving

0; / /

39



If prior 7(®) not separable, instead write

(01,02, - ,0p) = m1(01)7m2(02]601) ---7wp(0plO1,02---0p_1)
where

Physical point ® corresponding to point « in unit hypercube then found by using
this 7; in earlier expression

Physical parameters © used to calculate likelihood of point «
For many problems, prior 7(®) is uniform = u and ®-spaces coincide
For many other problems, prior 7(©) allows one to solve for © point analytically

In all cases, can solve for ® point numerically

Alternatively. .. re-cast inference problem: for example, define new ‘likelihood’
L1(©) = £(0)n(0®) and ‘prior’ 7/ (©®) = constant. But potentially inefficient since
lacks true prior 7w (©®) to guide the sampling of active points

40



PARTITIONING OF POINTS AND CONSTRUCTION OF ELLIPSOIDAL BOUNDS I

e At :th NS iteration, find ‘optimal’ ellipsoidal decomposition of /N active points
distributed uniformly in remaining prior volume X; using EM approach

e Let set of V active points in unit hypercube be S = {uq, up, - , up} and some
partitioning into X clusters be {S;}/*_,, where K > 1 and Uj*_, S, = S.

e For cluster (or subset) S;. containing n;. points, define quasi-minimum-volume
bounding ellipsoid

E, = {u € R°|u' (fiC) tu <1},
where the empirical covariance matrix of the subset is

1 -
Cp=— > (uj — muy)(uj — muy)
ni —1
]_
and mu, = Y% . . is its center of the mass. Enlargement factor f;. ensures F
k j=1Y k k

is a bounding ellipsoid. Note: volume of ellipsoid V' (E}.) o \/det(kak)

41



e At ith NS iteration, volume V' (S) from which set S uniformly sampled is unknown
remaining prior volume X, but use expectation value V' (S) = exp(—i/N)

o Define objective function
F(S)=—— E V(E
(5) = V(S) (Ek)

and minimise F'(.S), subject to the constraint F(S) > 1, wrt K-partitionings
{Sk}é{zl — ‘optimal’ decomposition of original sampled region into K ellipsoids

e Minimisation most easily performed using EM scheme, using result (Lu et al. 2007)
that, change in F'(.S) resulting from reassigning a point « from subset S;. to S is

V(Ep)d(u, Sy)  V(ER)d(u, Sk))
V(Sk) V(Sk)

AF(S)g e = (
where ~ is a constant,
d(u, Sg) = (u — mayg) ' (frCp) ™ (u — may)
IS ‘distance’ from u to centroid mu;. of ellipsoid F;., and
n,V (S)

N
may be considered the volume from which subset S;. was drawn uniformly

V(S;) =

42



e In fact, impose further constraint that V. (E,) > V' (S;.). Easily achieved by
enlarging ellipsoid E,. by factor f, such that V(E.) = max[V(E.), V(S.)],
before evaluating £'(S) and AF(S)y, s

e Minimising F'(S) equivalent to defining
V(Eg)d(u, Sg)
V(Sg)

and, for all points u € S, assigning u € S, to S, only if hy(w) < hp(uw),V k # K,
and repeating until convergence is achieved

hip(u) =

e To find optimal number of ellipsoids, K, use recursive scheme:
— start by performing k-means partition with X' = 2
— optimise this 2-partition as outlined above,
— recursively partition and optimise the resulting clusters

43



ELLIPSOIDAL DECOMPOSITION ALGORITHM |

1000 points drawn from two ellipsoids

1000 points drawn from a torus

1.

For S, calculate bounding ellipsoid £ and V ()
Enlarge £ sothat V(E) = max[V(E), V(S)]

Partition S into S; and S> containing n; and no
points using £k—means with K = 2

Calculate E1, E» and volumes V (E1), V(E»)

Enlarge £, (k = 1,2) so that V(E,) =
max[V (Ex), V (Sk)]-

For all w € S, assign u to S; such that hy(u) =
minfhi(z), h2(z)]

If no point reassigned goto 8; else goto 4

V(B +V(EL) < V(E) or V(E) > 2V (S)

— partition S into S1 and S»

— repeat entire algortihm for each subset S; and S»
else

—return F as the optimal ellipsoid of the point set S

44



EM algorithm quite computationally expensive, especially in high dimensions

But... MULTINEST need not perform full partitioning at each NS iteration

Ellipsoids can be evolved through scaling at subsequent NS iterations 7 + 4’ such
that V(Ek) = max[V(Ek), Xz—l—z’nk/N]

Ellipsoidal decomposition calculated at iteration : becomes less optimal as i’ grows
= perform full re-partitioning of active points if F'(S) > h (typically h = 1.1)

Possible that ellipsoids might not enclose the entire iso-likelihood contour, even
though sum of their volumes must exceed prior volume X =- safer to set desired
minimum volume as e.X, where e is an enlargement factor

Note: regardless of e-value, always ensure that ;. is a bounding ellipsoid of
subset S;..

45



SAMPLING FROM OVERLAPPING ELLIPSOIDS I

e At each NS iteration, need to draw a new point uniformly from union of ellipsoids
e i Suppose K ellipsoids { F..}, where kth one has volume V ( E})

e Choose one ellipsoid with probability p.. = V.. /Viot

e Sample from chosen ellipsoid within hard constraint L. > ;

e Find number n. of ellipsoids in which sample lies; accept with probability 1 /n.
46



TRIVIAL PARALLELIZATION I

Typical sampling efficiency less than unity since
— ellipsoidal approximation to iso-likelihood surface not perfect
— ellipsoids may overlap (as discussed above)

But... MULTINEST algorithm usefully (and easily) parallelized

At each NS iteration, draw a potential replacement point on each of Ncp
processors, where 1 /Nc-py is an estimate of the sampling efficiency

Effective efficiency close to unity across Ncpyy

47



IDENTIFICATION OF POSTERIOR MODES I

250
700
150 | 4
100

For multimodal posteriors, useful to identify which samples ‘belong’ to which mode

Some arbitrariness in this process: modes sit on top of some general ‘background’
of probability distribution

Moreover, modes lying close together may only ‘separate out’ at relatively high
likelihood levels
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Nonetheless, for well-defined ‘isolated’ modes:
— can make reasonable estimate of posterior mass each contains (‘local’ evidence)
— can construct posterior parameter constraints associated with each mode

Once NS process reached likelihood such that ‘footprint” of mode well-defined =
identify at each subsequent iteration the points in active set belonging to mode

Partitioning and ellipsoids construction algorithm described above provides
efficient and reliable method for performing this identification
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MODE IDENTIFICATION ALGORITHM I

. In first NS iteration, assign all active points to active group GG

. In subsequent NS iterations, pick subset S;. of (1 at random:

— S5 points become first members of ‘temporary set’ T
— E,. becomes first member of ‘ellipsoid set’ £

. Forall By ¢ £, determine if E;, intersects any ellipsoid in £

. If no such intersections occur:

—goto 5

else, for each such intersecting ellipsoid £} :
—add Sy points to 7 and add Ej to £
—goto 3

. If all ellipsoids are members of &£:

— (re)assign points in 7 to G

else

— (re)assign points in 7 to new active group G-

— (re)assign remaining active points to new active group G
— group (1 becomes ‘inactive’

. In current NS iteration, goto 2 and repeat algorithm for each

active group until no new active groups occur

. In subsequent NS iterations, apply algorithm to each active

group
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e At end of NS process = set of inactive groups and set of active groups, which
together partition the full set of (inactive and active) sample points generated

e Note: as NS process reaches higher likelihoods, number of active points in any
particular active group may dwindle to zero, but... group still considered active
since it remains unsplit at the end of NS run.

e Finally, each active group is promoted to a ‘mode’, resulting in a set of L. (say) such
modes { M;}.
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EVALUATION OF LOCAL EVIDENCES I

MZ
! o
° o o L
cmmmmTmm e e 0
ca 0 o e
AR o P e “‘Q
o . o H
5“' .G R B o | ‘I‘ Lo G9 b
L ; < ! 2
D. hd 6 .J: . G7. 3 OWO__V o\'l o
B L . : . ; o
R - B .. 1 1 G “ V
o * ° e Ve Mg io
\\\ G \ _.,-O "‘
o5 o 3 " G o
’ e ° MY
R el
(=] o _/,,5 5
o o
o
o
o [=3
G, i
o o o
e
,,,,,,,,,,,,,, )
0 . u,
0 1

e Suppose [th mode M contains the points {u;} (7 = 1,n;)

e In simplest approach, local evidence of mode is

ny
Zl = Z ijj
J=1

where w; = X, /N for each active point in M/, and w; = (X; 1 — X;11) for

each inactive point (2 is NS iteration when inactive point was discarded).
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e Similarly, posterior inferences resulting from [th mode obtained by weighting each
point in M; by pj = ijj/Zl-

e But... local evidence underestimated for modes lying close together — only
identified as separate regions at high likelihood values

e Overcome problem by also making use of points in the inactive groups at end of
NS process
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For each mode M}, expression local evidence now reads

n

where sum over g includes all points in inactive groups, wg = %(Xz-_l — X,;41) as
above, and additional factors a( ) are calculated as set out below.

Similarly, posterior inferences from /th mode obtained by weighting each point in
M; by p; = L;w;/Z; and each point in inactive groups by p; = Ljwgay )/Zl

Factors a(l) most easily determined by essentially reversing the mode
identification process

Each mode M, is simply a renamned active group G

Identify inactive group G’ that split to form G at the NS iteration :
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Assign all points in G’ the factor

NON nGA)@
g nD ()

where ngl)(i) IS number of active points in G at NS iteration 7; similar for ng})(i).

Now, G’ may itself have formed when an inactive group G split at an eariler NS
iteration 7/ < 4, in which case all points in G’ are assigned the factor

0 _ ngm(i)ng@(i/)
¢ .
(Z) nG// (Z/)

Process is continued until the recursion terminates
Finally, all points in inactive groups not already assigned have a( ) —
Easy to show Zle Z; = Z, the global evidence =- evidence exactly partitioned

Note: can instead use mixture model to assign factors



TOY PROBLEM: EGG-BOX LIKELIHOOD I
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Likelihood resembles egg-box and is given by

0 05\ 1°
L(601,0>) = exp [2 -+ cos (é) CcOS (é)] :
and prior is 4(0, 107) for both 61 and 0-.

Use 2000 active points = ~ 30, 000 likelihood evaluations to obtain
log Z = 235.86 4+ 0.06 (analytical log Z = 235.88)
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TOY PROBLEM: MULTIPLE GAUSSIAN LIKELIHOOD I

Cluster 1

Cluster 2

Log-Likalihood(L) §luster 2
Cluster 5
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-100

e Likelihood = five 2-D Gaussians of varying widths and amplitudes; prior = uniform
e Analytic evidence integral log £ = —5.27

e MULTINEST: log E = —5.33 £ 0.11, Njjie ~ 104

e Thermodynamic integration (+ error): log E = —5.24 + 0.12, Njjxe ~ 4 x 10°

e Typical of real applications (see later): ~ 500 x efficiency of standard MCMC
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TOY PROBLEM: MULTIPLE GAUSSIAN SHELLS I

e Likelihood defined as

L(w) = CirC(CB; Cl,Tl,wl) —|— CiI’C(IB; CQ,TQ,’UJQ),
where
1

2mTWw

circ(x; c,r,w) =

2 2w2

- [_uw ~ ¢ —r>2] |

and assuming a uniform prior
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e MULTINEST results:

Common Poims - | MULTINEST |
Paatiz o D Nike Efficiency

Likelihood
2 7,370  70.77%

5 17,967 51.02%
10 52,901 34.28%
20 255,092 15.49%
30 753,789  8.39%

Analytical | MULTINEST
D log(Z) locallog(Z) log(2) local log(Z1) local log(Z2>)
2 —1.75 —2.44 —1.72 £0.05 —2.28 £ 0.08 —2.56 +0.08
5 —5.67 —6.36 —5.75+0.08 —6.34 +0.10 —6.57 £0.11
10 —-14.59 —15.28 —-14.69+0.12 —-15.4140.15 —-15.36+0.15
20 -—-36.09 —36.78 —-35.93+£0.19 -37.134+0.23 —-36.28+0.22
30 —-60.13 —60.82 —-59.94+0.24 -60.704+0.30 —-60.57+0.32

e Bank sampler (MCMC): Njjo ~ 10° in D = 2 for parameter estimation alone



APPLICATIONS OF MULTINEST: TOY MODEL |

10 Lag-Likelihood (L) Chject 6 a

0 84800 -
84900 |
85000 |

-85100

e
-85200 @

0 50 100 150 200 0 50 100 150 200
X (pixels) X (pixels)

e Toy model: Gaussian objects in noise (Feroz & MPH, arXiv:0704.3704)
o Multinest: Njje ~ 10%, run time ~ 2 CPU mins — identified all objects correctly

e BayeSys (MCMC + thermo. int.): Njjxe ~ 5 x 10°, run time ~ 16 CPU hrs
Required several object subtraction iterations to identify all objects
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APPLICATIONS OF MULTINEST: TEXTURES IN CMB I

e Textures in CMB data (in preparation)
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e SZ clusters in all-sky Planck data (SZ Challenge 2)

dN /dlegY

Y recovered [oremin?]

APPLICATIONS OF MULTINEST: CLUSTERS IN SZ I

Simulated & recov

ered clusters
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|Recovered (1057 Cluilef3ﬁ

;

107 107% 102 107"
Y simulated [aremin?]

10°

10721
1073k
'ID_q;‘
107°1L

SZ flux

107 10™* 107 107% 107

. .2
Y simulated [aremin®]

10"

6, recovered [arcmin]

etections & false detections

10 F 1
i [Detections (1 1'.-'?} L
10°F _ False (115 :
10*
10°F [ ]
152' —I_IL‘-L._ .h'_' | -
10’ =
10° , .
107° 107* 107 107 1077 10°
Y recovered [arcmin?]
SZ wvirial radius
1000 - p
-’.’.r"
-~
-~
P
100F i
10§ E
-
1L % & ,
1 10 100 1000
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e 50 x 10° pixels, ~ 1000 recovered clusters, ~ 3 CPU hrs
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APPLICATIONS OF MULTINEST: CLUSTERS IN SZ I

e Cluster (and point sources) in interferometric SZ data (Feroz et al., arXiv:0811.1199)

e Simulations: A (left) without cluster and B (right) with cluster (5-model),
including CMB, 3 point sources, confusion noise, instrumental noise
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APPLICATIONS OF MULTINEST: CLUSTERS IN LENSING I

e Clusters in weak lensing surveys (Feroz, Marshall, MPH, arXiv:0810.0781)

e 0.5 x 0.5 deg? simulation (ACDM + Press—Schechter), 100 gal arcmin—2, o = 0.3
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e Probability ith mode is true positive p, = R; /(1 + R;) = npp = ZNizl (1 —ps)
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APPLICATIONS OF MULTINEST: GRAVITATIONAL WAVES I

e Simulated LISA data containing two signals from non-spinning SMBH mergers.
Each source has antipodal degeneracy = at least 4 modes in posterior

e All identified and well characterized in ~ 2 CPU hrs (Feroz et al., arXiv:0904.1544)

| opa 1289 % 10 9 200 % 1 15 % 10-3 1,159
A 0.1164 Tl 0.0511 019 (020053
1A TEIL 1.198 = 10 1405 1.128 x 1 83 = 10 8.529
Ax 0070 0.9247 1332 0.6307
TFIM 102 8642 x 1 3.202 x 107*  6.283 x 10 7.854 x 10
062 0.64 AA 0 1.198 1.1562 9742 1.OGTS
2A oy [} 8.G83 x 1 3.301 x 1 7.631 x 1
A) 1 1.0735 2.7418 1.0907
474 . S . Figure 4. 2D marginalised posteriors (left)
472 Figure 3. 2D marginalised posteriors (le&)_a“‘? A obtained by MultiNest for a subset of parameters|
° recovered parameter errors (above) for the intrinsic for the second Cosmic String burst source in the
4.7 parameters of source |. Errors are quoted as blind MLDC round 3 data set.The parameters
062 064 47 470474 multiples of the one sigma theoretical error computed are, in order from left to right or top to bottom,
from the Fisher Matrix, OFIM. Results are reported for source latitude, longitude and burst time. 1D
both the primary and the antipodal (‘A’) sky marginalised posteriors are shown at the top of
. 05 15 25 each column.
& 09 0.9 solutions. The parameters are, from left to
E 09 09 right and top to bottom, source latitude and
= . . 6
- 09 09 longitude, coalescence time, the mass of the .
062 064 17 400404 09 09 09 Primary .and the mass of the secondary. ID X
marginalised posteriors are shown at the top .
x107 x10° x107 of each column. .
2.005 2,005 2,005 1
a
(@) @) | SRV
1.995 1.995 1.995 X
062 064 47 472474 09 09 09 1.995 2 2005 i
+ 1.0736 1.0736
x 10 &
x10° x10° x10° x10° 10734 1.0734
2.005 2,005 2,005 2,005 g 1o 1 o7as
= 2 2 2 ﬂ 2 \ < om 1.073
1.995 1.995 1.995 1.995 10728 e %
062 064 47 472474 09 09 09 1995 2 2005 1995 2 2005
0 2 4 6 1.0728 1.0732 1.0736
: ¢ o (years) M x107 M x10° e ¢ teee) g

e Also applied successfully in Mock LISA Data Challenge Round 3 to simulations of 5
spinning BH binary inspirals and 3 cosmic strings (Feroz et al. arXiv:0911.0288)



