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OVERVIEW

• Review of standard BSM fitting methods

• Fast likelihood evaluation: neural networks

• Fast and reliable parameter space exploration: nested sampling

• Application to SUSY phenomenology

• The future: BAMBI

• Conclusions
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BASICS OF (BAYESIAN) DATA ANALYSIS

• Collect a set of N data points Di (i = 1,2, . . . , N), which we denote collectively as
the data vector D .

• Propose some model (or hypothesis) H for the data, depending on a set of M
parameters θj (j = 1, . . . ,M), that we denote by the parameter vector θ.

• Apply Bayes’ theorem

Pr(θ|D , H) =
Pr(D |θ, H) Pr(θ|H)

Pr(D |H)
→ P (θ) =

L(θ)π(θ)

E

• Parameter estimation: posterior P (θ) is complete inference

• Model selection: for Hi (i = 0,1), the probability density associated with D is

Ei =
∫
Li(θ)πi(θ) dθ

then consider ratio
Pr(H1|d)

Pr(H0|d)
=
E1

E0

Pr(H1)

Pr(H0)
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BSM CASE STUDY: CMSSM

• Consider restricted class of SUSY models with certain universality assumptions
regarding SUSY breaking parameters: cMSSM

• Model defined by 4 free parameters:

θ = {m0,m1/2, A0, tanβ},
i.e. the common scalar (m0), gaugino (m1/2) and tri-linear (A0) mass
parameters (all specfied at GUT scale) plus ratio of Higgs VEVs tanβ. We fix
sign(µ) to be positive, where µ is Higgs/higgsino mass parameter whose square is
computed from conditions of radiative EWSB.

• Also have 4 ‘nuisance’ parameters from Standard Model that enter calculation of
the observable quantities:

ψ = {Mt,mb(mb)
MS, αs(MZ)MS, αem(MZ)MS},

where Mt is pole top quark mass and mb(mb)
MS is bottom quark mass at mb,

while αs(MZ)MS and αem(MZ)MS are strong and electromagnetic coupling
constants at Z pole mass MZ (evaluated in MS scheme).

• Denote full 8D parameter space by Θ = (θ, ψ)
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PROBLEMS WITH STANDARD APPROACH

• Slow likelihood evaluation
Likelihood evaluation in SUSY particle model analysis involves computation of
mass spectrum via iterative solution of renormalization group equations (RGEs).

Current public numerical codes reach ∼ few % precision and are implemented up
to two-loop level, with calculation of physical masses involving, at least, full
one-loop radiative corrections
⇒ typical run time for spectrum calculator ∼ few secs per model point

Also, parameter spaces have unphysical regions (tachyonic solutions and/or EWSB
not fufilled), evenly spread across some projections of θ parameter space
⇒ testing and discarding unphysical points leads to large timing ineffciencies
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PROBLEMS WITH STANDARD APPROACH

• Slow exploration of parameter space
Traditional procedure is to evaluate likelihood function on a fixed grid, often
encompassing only 2 or 3 dimensions at the time
⇒ number of likelihood evaluations scales exponentially with no. of parameters
⇒ impractical for full exploration of cMSSM parameter space

More recently new approaches based on both Frequentist and Bayesian statistics
coupled with Markov Chain Monte Carlo (MCMC) methodology have been applied.
The effciency of the MCMC techniques allow for a full exploration of
multidimensional models, but still require 105–107 parameter points sampled
⇒ full analysis requires ∼ few× 100 days CPU time
⇒ perform analysis in ∼ 1–2 weeks on supercomputer depending on NCPU

available (×2− 3 for ‘naughty user ranking’, queues, etc. . . )

AND. . . × ∼ 10 for model selection using MCMC thermodynamic integration
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PROBLEMS WITH STANDARD APPROACH

• Incomplete exploration of parameter space
Likelihood function of these models is complex and multimodal with many narrow
features, making the exploration task with conventional MCMC methods
challenging often with low sampling effciency
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1: Neural networks: fast likelihood
evaluation

7



MULTI-LAYER PERCEPTRON NEURAL NETWORKS

• MLP = feed-forward network composed of ordered layers of perceptrons

• Consider 3-layer MLP here: input layer, hidden layer and output layer

hidden layer: hj = g(1)(f(1)
j ); f

(1)
j =

∑
l

w
(1)
jl xl + b

(1)
j ,

output layer: yi = g(2)(f(2)
i ); f

(2)
i =

∑
l

w
(2)
ij hj + b

(2)
i ,

• Use non-linear activation function (g1(x) = tanhx) on outputs of all hidden layer
neurons; use g2(x) = x

• Any L2-function f : <n → <m, can be approximated to arbitrary mean square
error accuracy by a 3-layer MLP
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NEURAL NETWORK APPROACH TO BSM PHYSICS

• Any analysis of cMSSM parameter space must relate model parameters Θ to
observable quantities, such as the sparticle mass spectrum m at the LHC

• One can view RGEs (e.g. SOFTSUSY) simply as a mapping from Θ→m and
engineer a computationally efficient representation of this function

• Vast literature on multivariate function approximation, including neural networks,
radial basis functions, support vector machines and regression trees

• Neural networks accurate and easy: random training data, scale linearly with
dimension

• Regression 3-layer neural network: input layer x = Θ; output layer y = m
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CMSSM MODEL ‘LEARNED’

• 8-parameter model in neighbourhood of SUSY benchmark point

• Easily applicable to other regions of parameter space, e.g. focus point

• Now extending representation to wider parameter ranges
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REGRESSION NEURAL NETWORK TRAINING

• Training data: D = {Θ(k),m(k)}
– randomly select ∼ 4000 points Θ(k) in box in cMSSM parameter space
– calculate corresponding sparticle mass spectra m(k) using SOFTSUSY

• Maximise log-likelihood (misfit) with respect to network parameters a = (w , b):

L(a) = −1
2

∑
k

∑
i

[
m

(k)
i − yi(Θ(k);a)

]2

• Highly non-linear function in 1000s of dimensions⇒ use MEMSYS optimiser on:

F (a) = L(a) + αS(a)

• Increments α down the maximum entropy trajectory (starting from α =∞) until the
error term dominates; trains in ∼ 10 mins with 10 hidden nodes (max evidence)

• Create separate test data to evaluate accuracy
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REGRESSION NEURAL NETWORK RESULTS

• Comparison of SOFTSUSY and NN
mass spectra
• All mass spectrum components have

correlation coefficients > 0.9999
• Typical CPU time for each NN mass

spectrum calculation ∼ few× 10−4 s
• Factor of ∼ 104 speed-up over SOFT-

SUSY full RGE solution
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CLASSIFICATION NEURAL NETWORK

• cMSSM parameter space has unphysical regions spread evenly across it
⇒ testing and discarding unphysical points leads to large timing ineffciencies
⇒ train classification neural network to identify physical and unphysical points

• Train 3-layer NN: input layer x = Θ; output layer pi = eyi∑
j e
yj (SoftMax)

⇒ output pi gives probability of input vector belonging to ith-class

• Training data: D = {Θ(k), t(k)}
– kth target vector t(k) has unity in class of kth input vector Θ(k) and zeroes elsewhere
– randomly select ∼ 30000 points Θ(k) in box in cMSSM parameter space

• Network training as before but using L(a) =
∑
k
∑
i

[
t
(k)
i ln pi(Θ(k);a)

]

• ROC curve plots true positive rate (TPR) vs
false positive rate (FPR) as a function of
classifier threshold pth.
• Defines (high) quality of the resulting NN bi-

nary classifier
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2: Nested sampling: fast and reliable
parameter space exploration
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SOME (COSMOLOGICAL) POSTERIORS

• Some posteriors are nice, others are nasty
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ΛCDM: θ = (ωb, ωc, θ, τ, lnA,ns)

using CMB+SDSS+HST data
(Trotta 2004)

Detecting SZ clusters in CMB:
θ = (X,Y,A,R)

(Hobson & McLachlan 2003)

• Posterior exploration (parameter estimation) and integration (model selection)
traditionally performed using MCMC sampling
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METROPOLIS–HASTINGS ALGORITHM

x(1)Q(x;x(1)) P �(x)
L� • Metropolis–Hastings algorithm to sample P (θ):

– start at arbitrary point θ0

– at each step draw trial point θ′ ← Q(θ′|θn) from
proposal distribution

– calculate ratio r = P (θ′)Q(θn|θ′)/P (θn)Q(θ′|θn)

– if r ≥ 1 accept θn+1 = θ′;
if r < 1 accept with probability r, else θn+1 = θn

• Implementation of basic MH algorithm is trivial:

Initialise θ0; set n = 0
Repeat [

Sample a point θ′ from Q(·|θn)
Sample a uniform [0,1] random variable U
If U ≤ α(θ′, θn) set θn+1 = θ′, else θn+1 = θn
Increment n]

• After initial burn-in period, any (positive) proposal Q⇒ convergence to P (θ)

• Common choice for Q is multivariate Gaussian centred on θn (CosmoMC)
16



METROPOLIS–HASTINGS ALGORITHM: SOME PROBLEMS

x(1)Q(x;x(1)) P �(x)
L�

• But. . . choice of Q strongly affects rate of conver-
gence and sampling efficiency.
• Large proposal width ε⇒ trial points rarely accepted
• Small proposal width ε⇒ chain explores P (θ) by a

random walk – very slow
• If largest scale of P (θ) is L
⇒ typical diffusion time t ∼ (L/ε)2

• If smallest scale of P (θ) is `
⇒ need ε ∼ `⇒ diffusion time t ∼ (L/`)2

Q

P • Particularly bad for multimodal distributions
• Transitions between distant modes very rare
• No choice of proposal width ε works
• Standard convergence tests will suggest converged,

but actually only true in a subset of modes
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METROPOLIS–HASTINGS ALGORITHM: SOME PARTIAL FIXES

• Set proposal width ε by trial and error to achieve acceptance ratio ∼ 0.5, or
dynamically during burn-in, but must fix thereafter

• Multiple (non-interacting) chains sometimes useful

• Annealing schedules or multi-temperature chains

• Several sequential proposals: each updating only some parameters

• Innovative proposals, e.g Gibbs, Hamiltonian, slice sampling, genetic algorithms, . . .

• Compound proposal: multiple proposals Qi each chosen at random with probability pi

• Use of multiple interacting chains, e.g.

θp

θ n

θ’

leapfrog

θ′ = 2θp − θn

θ n

θ’

θp

θp’

cross-walk

θ′ = θp + θp′ − θn

θp

θp’
θ n

θ’

guided-walk

θ′ = θn + (θp − θp′)
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NESTED SAMPLING

• New technique for efficient evidence evalua-
tion (and posterior samples) (Skilling 2004)

• Define X(λ) =
∫
L(θ)>λ

π(θ) dθ

• Write inverse L(X), i.e. L(X(λ)) = λ

• Evidence becomes one-dimensional integral

E =
∫
L(θ)π(θ) dθ =

∫ 1

0
L(X) dX

• Suppose can evaluate Lj = L(Xj) where
0 < Xm < · · · < X2 < X1 < 1

⇒ estimate E by any numerical method

E =
m∑
j=1

Ljwj

(wj = 1
2(Xj−1 −Xj+1) for trapezium rule)
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Nested sampling approach to summation:
1. Set i = 0; initially X0 = 1, E = 0

2. Sample N points {θj} randomly from π(θ)

and calculate their likelihoods

3. Set i→ i+ 1

4. Find point with lowest likelihood value (Li)

5. Remaining prior volumeXi = tiXi−1 where
Pr(ti|N) = NtN−1

i ;
or just use 〈ti〉 = N/(N + 1)

6. Increment evidence E → E + Liwi

7. Remove lowest point from active set

8. Replace with new point sampled from π(θ)

within hard-edged region L(θ) > Li

9. If LmaxXi < αE (where some tolerance)

⇒ E → E +Xi
∑N
j=1L(θj)/N ; stop

else goto 3
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• Advantages:
– typically requires around few 100 times fewer samples than thermodynamic

integration to calculate evidence to same accuracy (plus error estimate)

– does not get stuck at phase changes like thermodynamic integration

log X

log L
Anneal

log X

B

C

D

E
F

A

slope=−1

(b)(a)

log L
• As λ : 0→ 1 annealing should
track along curve

• But d logL
d logX = −1

λ, so annealing
schedule cannot navigate
convex regions (phase changes)

• Bonus: posterior samples easily obtained as
a by-product. Simply take full sequence of
sampled points θj and weight jth sample by
pj = Ljwj/E, e.g.

µQ =
∑
j

pjQ(θj),

σ2
Q =

∑
j

(pjQ(θj)− µQ)2
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PRACTICAL CONSIDERATIONS

• Most challenging task: at each iteration i must replace removed point with one
sampled from π(θ) within complicated, hard-edged region L(θ) > Li

• Simple MCMC using Metropolis–Hastings possible, but can be inefficient

• Mukherjee et al. (2005) fit ellipsoid to active points, enlarge to try to account for
non-ellipsoidal likelihood contour, and sample within it using simple, exact method

• Demonstrated high-efficiency and robustness on simple unimodal cosmological
posteriors (∼ 100 times faster evidence evaluation cf. thermodynamic integration)

• But. . . still problematic for multimodal/ degenerate posteriors 22



Problem with elliptical region sampling (N = 20):
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Problem with elliptical region sampling (N = 20):
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Problem with elliptical region sampling (N = 20):
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Problem with elliptical region sampling (N = 20):
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Problem with elliptical region sampling (N = 20):

27



MULTIMODAL NESTED SAMPLING – MULTINEST

• Introduced by Feroz & MPH (2008), refined by Feroz, MPH & Bridges (2008)

• At each nested sampling iteration i:
– construct optimal multi-ellipsoidal bound for each cluster (variable ellipsoid number),

or evolve existing decomposition via scaling (fast)
– determine ellipsoid overlaps using cheap exact algorithm (Alfano et al. 2003)
– remove point with lowest Li from active points; increment evidence
– pick ellipsoid randomly and sample new point with L > Li, accounting for overlaps

• MULTINEST algorithm usefully (and easily) parallelized
28



IDENTIFICATION OF MODES

• For multimodal posteriors, useful to identify which samples ‘belong’ to which mode

• For well-defined ‘isolated’ modes:
– can make reasonable estimate of posterior mass each contains (‘local’ evidence)
– can construct posterior parameter constraints associated with each mode

• Partitioning and ellipsoids construction algorithm described above provides
efficient and reliable method for performing mode identification
⇒ ‘local’ evidence and parameter constraints for each isolated mode
⇒ sum of local evidences equals ‘global’ evidence
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3: Application to SUSY phenomenology
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NEURAL NETWORKS AND MULTINEST IN SUSY PHENOMENOLOGY

• MULTINEST applied to cMSSM and pMSSM (by us)
(see arXiv:0807.4512, arXiv:0809.3792, arXiv:0903.2487, arXiv0904.2548,
arXiv0906.0957, arXiv:1101.3296)

• In all cases, MULTINEST is few× 100 more efficient than MCMC

• NNs and MULTINEST in cMSSM around benchmark point (arXiv:1011.4306)

• Speeds up analysis by factor ∼ 106 (NN by ∼ 104 and MULTINEST by ∼ 102)
⇒ original SOFTSUSY + MCMC = 720 CPU days; NN + MULTINEST = 1 minute
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CALCULATION OF PROFILE LIKELIHOOD (FOR FREQUENTISTS!)

• Bayesians believe in posterior mass
⇒ MULTINEST produces samples drawn according to full 8D posterior Θ = (θ,ψ)
⇒ calculate marginalised posteriors for parameters of interest

P (θ) =
∫
P (θ,ψ) dψ

• Frequentists believe in likelihood global maximum
⇒ calculate profile likelihood for parameters of interest

λ(θ) ≡
L(θ, ˆ̂ψ)

L(θ̂, ψ̂)

where ˆ̂ψ is conditional MLE with θ fixed, and θ̂ and ψ̂ are unconditional MLEs

• Standard MULTINEST configuration good for accurate reconstruction of Bayesian
posterior (spikes unimportant), BUT profile likelihood poorly approximated

• Require more live points and later termination criterion
⇒ allows MULTINEST to explore high-likelihood regions (including spikes)
⇒ significantly better approximation to profile likelihood than latest genetic
algorithm method, particularly near boundaries of the interval 32



CALCULATION OF PROFILE LIKELIHOOD (FOR FREQUENTISTS!)

• MULTINEST Bayesian marginalised posteriors and profile likelihoods in cMSSM
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4: The future: BAMBI. . .
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BLIND ACCELERATED MUTLIMODAL BAYESIAN INFERENCE (BAMBI)

• General Bayesian inference engine with wide applicability: only requires choice of
priors on the parameters in model

• Combines neural networks and nested sampling in complementary manner

• Basic idea is as follows:

– early stage (prior-driven) nested samples⇒ (incremental) training data set

– simultaneous training of neural network⇒ ‘learn’ likelihood function

– clustering in nested sampler⇒ accelerates network training

– once trained, network replaces likelihood code
⇒ completes posterior sampling and evidence evaluation extremely rapidly

– trained likelihood network available for subsequent analyses
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CONCLUSIONS

• Standard Bayesian or Frequentist analyses can be very computationally intensive:
days–weeks on a supercomputer

• Large speed-ups possible using neural networks for model prediction

• Efficient and robust parameter space exploration provided by nested sampling
– MULTINEST allows sampling from multimodal/degenerate posteriors
– typically few× 100 times more efficient than standard MCMC

• These methods should be useful in a wide range of physical inference problems;
already applied in many areas

• COSMONET and MULTINEST code publically available from:
www.mrao.cam.ac.uk/software/cosmonet
www.mrao.cam.ac.uk/software/multinest

• BAMBI in development. . .
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Supplementary slides
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ADVANTAGES OF COSMONET

• Simplicity: provides single, simple, closed-form function for each interpolation over
entire parameter space

• Memory usage: a network with Ni input nodes, Nh hidden nodes and No output
nodes has (Ni + 1)Nh + (Nh + 1)No ≈ NhNo parameters. For above model,
requires only ∼ 50 kB of parameter memory

• Accuracy: excellent after only ∼ few mins of training on single 2GHz CPU

• Speed: number of calculations to perform feed-forward network mapping is
2Ni Nh + 2NhNo ≈ 2NhNo . In above example, calculation of C` spectrum in ∼
20 microseconds, and WMAP likelihood in ∼ 5 microseconds

• Scaling: Nh increases at worst linearly with Ni
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UNIT HYPERCUBE SAMPLING SPACE

• Algorithm for partitioning active points into clusters and constructing ellipsoidal
bounds requires uniformly distributed points

• MULTINEST ‘native’ space = D-dimensional unit hypercube in which samples are
drawn uniformly. All operations are carried out in this space (cf. BAYESYS).

• To conserve probability mass, point u = (u1, u2, · · · , uD) in unit hypercube
transformed point Θ = (θ1, θ2, · · · , θD) in ‘physical’ parameter space, such that∫

π(θ1, θ2, · · · , θD) dθ1 dθ2 · · · dθD =
∫
du1du2 · · · duD

• In simple case that prior separable: π(Θ) = π1(θ1)π2(θ2) · · ·πD(θD), set
πj(θj)dθj = duj ⇒ for given uj, find θj by solving

uj =
∫ θj
−∞

πj(θ
′
j)dθ

′
j
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• If prior π(Θ) not separable, instead write

π(θ1, θ2, · · · , θD) = π1(θ1)π2(θ2|θ1) · · ·πD(θD|θ1, θ2 · · · θD−1)

where

πj(θj|θ1, · · · , θj−1) =
∫
π(θ1, · · · , θj−1, θj, θj+1, · · · , θD) dθj+1 · · · dθD

• Physical point Θ corresponding to point u in unit hypercube then found by using
this πj in earlier expression

• Physical parameters Θ used to calculate likelihood of point u
For many problems, prior π(Θ) is uniform⇒ u and Θ-spaces coincide
For many other problems, prior π(Θ) allows one to solve for Θ point analytically

• In all cases, can solve for Θ point numerically

• Alternatively. . . re-cast inference problem: for example, define new ‘likelihood’
L′(Θ) ≡ L(Θ)π(Θ) and ‘prior’ π′(Θ) ≡ constant. But potentially inefficient since
lacks true prior π(Θ) to guide the sampling of active points
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PARTITIONING OF POINTS AND CONSTRUCTION OF ELLIPSOIDAL BOUNDS

• At ith NS iteration, find ‘optimal’ ellipsoidal decomposition of N active points
distributed uniformly in remaining prior volume Xi using EM approach

• Let set of N active points in unit hypercube be S = {u1,u2, · · · ,uN} and some
partitioning into K clusters be {Sk}Kk=1, where K ≥ 1 and ∪Kk=1Sk = S.

• For cluster (or subset) Sk containing nk points, define quasi-minimum-volume
bounding ellipsoid

Ek = {u ∈ RD|uT(fkCk)−1u ≤ 1},
where the empirical covariance matrix of the subset is

Ck =
1

nk

nk∑
j=1

(uj −muk)(uj −muk)T

and muk =
∑nk
j=1 uj is its center of the mass. Enlargement factor fk ensures Ek

is a bounding ellipsoid. Note: volume of ellipsoid V (Ek) ∝
√

det(fkCk)
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• At ith NS iteration, volume V (S) from which set S uniformly sampled is unknown
remaining prior volume Xi, but use expectation value V (S) = exp(−i/N)

• Define objective function

F (S) ≡
1

V (S)

K∑
k=1

V (Ek)

and minimise F (S), subject to the constraint F (S) ≥ 1, wrt K-partitionings
{Sk}Kk=1⇒ ‘optimal’ decomposition of original sampled region into K ellipsoids

• Minimisation most easily performed using EM scheme, using result (Lu et al. 2007)
that, change in F (S) resulting from reassigning a point u from subset Sk to Sk′ is

∆F (S)k,k′ ≈ γ
(
V (Ek′)d(u , Sk′)

V (Sk′)
−
V (Ek)d(u , Sk)

V (Sk)

)
where γ is a constant,

d(u , Sk) = (u −muk)T(fkCk)−1(u −muk)

is ‘distance’ from u to centroid muk of ellipsoid Ek, and

V (Sk) =
nkV (S)

N
may be considered the volume from which subset Sk was drawn uniformly
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• In fact, impose further constraint that V (Ek) > V (Sk). Easily achieved by
enlarging ellipsoid Ek by factor fk, such that V (Ek) = max[V (Ek), V (Sk)],
before evaluating F (S) and ∆F (S)k,k′

• Minimising F (S) equivalent to defining

hk(u) =
V (Ek)d(u , Sk)

V (Sk)

and, for all points u ∈ S, assigning u ∈ Sk to Sk′ only if hk(u) < hk′(u), ∀ k 6= k′,
and repeating until convergence is achieved

• To find optimal number of ellipsoids, K, use recursive scheme:
– start by performing k-means partition with K = 2

– optimise this 2-partition as outlined above,
– recursively partition and optimise the resulting clusters
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ELLIPSOIDAL DECOMPOSITION ALGORITHM

1000 points drawn from two ellipsoids

1000 points drawn from a torus

1. For S, calculate bounding ellipsoid E and V (E)

2. Enlarge E so that V (E) = max[V (E), V (S)]

3. Partition S into S1 and S2 containing n1 and n2

points using k−means with K = 2

4. Calculate E1, E2 and volumes V (E1), V (E2)

5. Enlarge Ek (k = 1,2) so that V (Ek) =
max[V (Ek), V (Sk)].

6. For all u ∈ S, assign u to Sk such that hk(u) =
min[h1(x), h2(x)]

7. If no point reassigned goto 8; else goto 4

8. If V (E1) + V (E2) < V (E) or V (E) > 2V (S)
– partition S into S1 and S2

– repeat entire algortihm for each subset S1 and S2

else
– return E as the optimal ellipsoid of the point set S
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• EM algorithm quite computationally expensive, especially in high dimensions

• But. . . MULTINEST need not perform full partitioning at each NS iteration

• Ellipsoids can be evolved through scaling at subsequent NS iterations i+ i′ such
that V (Ek) = max[V (Ek), Xi+i′nk/N ]

• Ellipsoidal decomposition calculated at iteration i becomes less optimal as i′ grows
⇒ perform full re-partitioning of active points if F (S) ≥ h (typically h = 1.1)

• Possible that ellipsoids might not enclose the entire iso-likelihood contour, even
though sum of their volumes must exceed prior volume X ⇒ safer to set desired
minimum volume as eX, where e is an enlargement factor

• Note: regardless of e-value, always ensure that Ek is a bounding ellipsoid of
subset Sk.
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SAMPLING FROM OVERLAPPING ELLIPSOIDS

• At each NS iteration, need to draw a new point uniformly from union of ellipsoids

• k Suppose K ellipsoids {Ek}, where kth one has volume V (Ek)

• Choose one ellipsoid with probability pk = Vk/Vtot

• Sample from chosen ellipsoid within hard constraint L > Li

• Find number ne of ellipsoids in which sample lies; accept with probability 1/ne

46



TRIVIAL PARALLELIZATION

• Typical sampling efficiency less than unity since
– ellipsoidal approximation to iso-likelihood surface not perfect
– ellipsoids may overlap (as discussed above)

• But. . . MULTINEST algorithm usefully (and easily) parallelized

• At each NS iteration, draw a potential replacement point on each of NCPU

processors, where 1/NCPU is an estimate of the sampling efficiency

⇒ Effective efficiency close to unity across NCPU
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IDENTIFICATION OF POSTERIOR MODES

• For multimodal posteriors, useful to identify which samples ‘belong’ to which mode

• Some arbitrariness in this process: modes sit on top of some general ‘background’
of probability distribution

• Moreover, modes lying close together may only ‘separate out’ at relatively high
likelihood levels
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• Nonetheless, for well-defined ‘isolated’ modes:
– can make reasonable estimate of posterior mass each contains (‘local’ evidence)
– can construct posterior parameter constraints associated with each mode

• Once NS process reached likelihood such that ‘footprint’ of mode well-defined⇒
identify at each subsequent iteration the points in active set belonging to mode

• Partitioning and ellipsoids construction algorithm described above provides
efficient and reliable method for performing this identification
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MODE IDENTIFICATION ALGORITHM

1. In first NS iteration, assign all active points to active group G1

2. In subsequent NS iterations, pick subset Sk of G1 at random:
– Sk points become first members of ‘temporary set’ T
– Ek becomes first member of ‘ellipsoid set’ E

3. For all Ek′ /∈ E , determine if Ek′ intersects any ellipsoid in E

4. If no such intersections occur:
– goto 5
else, for each such intersecting ellipsoid Ek′:
– add Sk′ points to T and add Ek′ to E
– goto 3

5. If all ellipsoids are members of E :
– (re)assign points in T to G1

else
– (re)assign points in T to new active group G2

– (re)assign remaining active points to new active group G3

– group G1 becomes ‘inactive’

6. In current NS iteration, goto 2 and repeat algorithm for each
active group until no new active groups occur

7. In subsequent NS iterations, apply algorithm to each active
group
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• At end of NS process⇒ set of inactive groups and set of active groups, which
together partition the full set of (inactive and active) sample points generated

• Note: as NS process reaches higher likelihoods, number of active points in any
particular active group may dwindle to zero, but. . . group still considered active
since it remains unsplit at the end of NS run.

• Finally, each active group is promoted to a ‘mode’, resulting in a set of L (say) such
modes {Ml}.
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EVALUATION OF LOCAL EVIDENCES

• Suppose lth mode Ml contains the points {uj} (j = 1, nl)

• In simplest approach, local evidence of mode is

Zl =
nl∑
j=1

Ljwj

where wj = XM/N for each active point in Ml and wj = 1
2(Xi−1 −Xi+1) for

each inactive point (i is NS iteration when inactive point was discarded).
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• Similarly, posterior inferences resulting from lth mode obtained by weighting each
point in Ml by pj = Ljwj/Zl.

• But. . . local evidence underestimated for modes lying close together – only
identified as separate regions at high likelihood values

• Overcome problem by also making use of points in the inactive groups at end of
NS process
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• For each mode Ml, expression local evidence now reads

Zl =
nl∑
j=1

Ljwj +
∑
g
Lgwgα(l)

g ,

where sum over g includes all points in inactive groups, wg = 1
2(Xi−1 −Xi+1) as

above, and additional factors α(l)
g are calculated as set out below.

• Similarly, posterior inferences from lth mode obtained by weighting each point in
Ml by pj = Ljwj/Zl and each point in inactive groups by pg = Lgwgα(l)

g /Zl

• Factors α(l)
g most easily determined by essentially reversing the mode

identification process

• Each mode Ml is simply a renamned active group G

• Identify inactive group G′ that split to form G at the NS iteration i
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• Assign all points in G′ the factor

α
(l)
g =

n
(A)
G (i)

n
(A)
G′ (i)

,

where n(A)
G (i) is number of active points in G at NS iteration i; similar for n(A)

G′ (i).

• Now, G′ may itself have formed when an inactive group G′′ split at an eariler NS
iteration i′ < i, in which case all points in G′′ are assigned the factor

α
(l)
g =

n
(A)
G (i)

n
(A)
G′ (i)

n
(A)
G′ (i′)

n
(A)
G′′ (i′)

.

• Process is continued until the recursion terminates

• Finally, all points in inactive groups not already assigned have α(l)
g = 0.

• Easy to show
∑L
l=1Zl = Z, the global evidence⇒ evidence exactly partitioned

• Note: can instead use mixture model to assign factors



TOY PROBLEM: EGG-BOX LIKELIHOOD

• Likelihood resembles egg-box and is given by

L(θ1, θ2) = exp
[
2 + cos

(
θ1

2

)
cos

(
θ2

2

)]5
,

and prior is U(0,10π) for both θ1 and θ2.

• Use 2000 active points⇒∼ 30,000 likelihood evaluations to obtain
logZ = 235.86± 0.06 (analytical logZ = 235.88)
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TOY PROBLEM: MULTIPLE GAUSSIAN LIKELIHOOD

• Likelihood = five 2-D Gaussians of varying widths and amplitudes; prior = uniform

• Analytic evidence integral logE = −5.27

• MULTINEST: logE = −5.33± 0.11, Nlike ≈ 104

• Thermodynamic integration (+ error): logE = −5.24± 0.12, Nlike ≈ 4× 106

• Typical of real applications (see later): ∼ 500× efficiency of standard MCMC
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TOY PROBLEM: MULTIPLE GAUSSIAN SHELLS

• Likelihood defined as

L(x) = circ(x ; c1, r1, w1) + circ(x ; c2, r2, w2),

where

circ(x ; c, r, w) =
1√

2πw2
exp

[
−

(|x − c| − r)2

2w2

]
.

and assuming a uniform prior
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• MULTINEST results:

MULTINEST
D Nlike Efficiency
2 7,370 70.77%
5 17,967 51.02%

10 52,901 34.28%
20 255,092 15.49%
30 753,789 8.39%

Analytical MULTINEST
D log(Z) local log(Z) log(Z) local log(Z1) local log(Z2)
2 −1.75 −2.44 −1.72± 0.05 −2.28± 0.08 −2.56± 0.08
5 −5.67 −6.36 −5.75± 0.08 −6.34± 0.10 −6.57± 0.11

10 −14.59 −15.28 −14.69± 0.12 −15.41± 0.15 −15.36± 0.15
20 −36.09 −36.78 −35.93± 0.19 −37.13± 0.23 −36.28± 0.22
30 −60.13 −60.82 −59.94± 0.24 −60.70± 0.30 −60.57± 0.32

• Bank sampler (MCMC): Nlike ∼ 106 in D = 2 for parameter estimation alone
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APPLICATIONS OF MULTINEST: TOY MODEL

• Toy model: Gaussian objects in noise (Feroz & MPH, arXiv:0704.3704)

• Multinest: Nlike ∼ 104, run time ∼ 2 CPU mins – identified all objects correctly

• BayeSys (MCMC + thermo. int.): Nlike ∼ 5× 106, run time ∼ 16 CPU hrs
Required several object subtraction iterations to identify all objects
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APPLICATIONS OF MULTINEST: TEXTURES IN CMB

• Textures in CMB data (in preparation)
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APPLICATIONS OF MULTINEST: CLUSTERS IN SZ

• SZ clusters in all-sky Planck data (SZ Challenge 2)

• 50× 106 pixels, ∼ 1000 recovered clusters, ∼ 3 CPU hrs 61



APPLICATIONS OF MULTINEST: CLUSTERS IN SZ

• Cluster (and point sources) in interferometric SZ data (Feroz et al., arXiv:0811.1199)

• Simulations: A (left) without cluster and B (right) with cluster (β-model),
including CMB, 3 point sources, confusion noise, instrumental noise

• A simulation R = 0.35± 0.05; B simulation R ∼ 1033. Parameter constraints:
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APPLICATIONS OF MULTINEST: CLUSTERS IN LENSING

• Clusters in weak lensing surveys (Feroz, Marshall, MPH, arXiv:0810.0781)

• 0.5× 0.5 deg2 simulation (ΛCDM + Press–Schechter), 100 gal arcmin−2, σ = 0.3

• Probability ith mode is true positive pi = Ri/(1 +Ri)⇒ n̂FP =
∑N

i=1
pi>pth

(1− pi)
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APPLICATIONS OF MULTINEST: GRAVITATIONAL WAVES

• Simulated LISA data containing two signals from non-spinning SMBH mergers.
Each source has antipodal degeneracy⇒ at least 4 modes in posterior

• All identified and well characterized in ∼ 2 CPU hrs (Feroz et al., arXiv:0904.1544)

• Also applied successfully in Mock LISA Data Challenge Round 3 to simulations of 5
spinning BH binary inspirals and 3 cosmic strings (Feroz et al. arXiv:0911.0288)64


