Reconstruction of High-energy Muons in CMS **Vladimir Palichik** JINR, Dubna The Physics of the Dimuons at the LHC WS'2022 Dubna, June 23, 2022 ## An example of heavy mass di-muon eventsimulation (Pt of muons ~ 1 TeV) Bremsstrahlung and e-m showering close to hard muons lead to the problems with reconstruction in the muon system ## CSC APPEARED IN HIGH PU EVENT DISPLAY Approved for public display (May 2012) https://indico.cern.ch/conferenceDisplay.py?confld=169297 ## Motivation - ✓ studies with hard*) muons at CMS can lead to new physical phenomena discoveries and also be a tool for testing of reconstruction algorithms on their efficiency and a precision of measurements - ✓ precision of measurements in the muon system plays a leading role in achieving of the required resolution on transverse momentum and mass reconstruction for the processes with hard muons - ✓ Dubna group is responsible for ME1/1 production ME1/1 is the most precise station in the muon endcap system: $\sigma(\text{ME1/1}) : \sigma(\text{ME2} \div 4) \sim 1 : 2$ a special interest to high-p_T muons (~ 1 TeV), where a role of the muon system increases *) hard muons – the muons with high transverse momenta from several hundred GeV up to TeV region ## **Endcap Muon Reconstruction** Local Regional Global (individ.detectors) (Muon system) (Muon & Tracker system) ### Local reconstruction: - 1. Drift Tubes in the Barrel - 2. CSCs in the Endcap: clusters of Digis fitted into RecHits, i.e. position of hits in the detector layers. - 3. Track-segment building (track following & track road methods) with the compatible RecHits in muon chambers. The track-segments are selected by a goodness of fit criteria (χ^2). See more detailed report about local reconstruction by N. Voytishin tomorrow ## Regional Muon Reconstruction ## Standalone Muon system (DT, CSC and RPC): e.m.showers& punchthrough Multiple scattering, energy losses, bremsstrahlung, e⁺ e⁻ from Hadron Calorimeter (HCAL) in Iron Yokes (I Y) pair production etc. Muon trajectory is built on a base of CSC and DT track-segments Recursive track fitting (from hit to hit in endcap; with use segments in barrel) by the least squares method (Kalman filter propagation & parameter estimation) #### Global Muon Reconstruction #### inclusion of tracker hits #### Modification of local reconstruction algorithm for muons in CSCs The algorithm for Endcap track segment building has been improved taking into account the contamination of muon measurements by a secondary electromagnetic accompaniment: - 1) the more narrow rd ϕ (dRPhiMax=1cm-> 3mm) and χ^2 criteria (100->20); - 2) additional dφ-checking (0.6 0.8 mrad); - 3) rdf and df checkings for ME1/1 and others CSCs differ in the accordance with their accuracy; - 4) if a number of RecHits is not so big (low contaminated chamber) then a required minimal number of hits in track segment is changed from 4 to 3. implemented in ORCA (December, 2003) #### Modification of regional reconstruction algorithm in ORCA for TeV muons Improved high Pt trajectory seed Generator in CSCs for Standalone Muon reconstruction: (The first variant of the algorithm for ORCA_7 has been created in cooperation with Ivan Belotelov) 1) finding the track-segment pairs and select according to quality (priority of ME station pairs, hit multiplicity and number of track segments in chamber, number of points in track segment) in L1 (η, ϕ) -region | priority | ME | stations | |----------|-----|----------| | 1 | 1 - | (3,4) | | 2 | 1 - | 2 | | 3 | 2 - | (3,4) | - 2) estimation of Pt by $d\phi$ [Pt= ($C_1 + C_2 \eta$)/ $d\phi$] for a segment pair selected (the parameters C1 and C2 have been chosen with assistance of Gleb Mescherjakov) - 3) use these seeds to start standard muon reconstruction - 4) the code is implemented in the MuonReconstruction package of the MuonReco subsystem ## Progress with Single Pt = 1 TeV Muon Reconstruction in endcap $(1.2 < \eta < 2.1)$ region ## Back up ## Compact Muon Solenoid Detector Tracker & Calo system - for e^+ , e^- , γ , hadrons, jets and $\nu(E_T \text{ miss})$ Tracker & Muon system – for muons