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Running masses in the standard model

Running couplings: αQCD, αEW

Different mass parameterizations
(different approaches to include higher orders):
- pole (on-shell) mass
- running mass

Running masses: parameterization of HO corrections

SM running masses
- fermions and vector bosons: logarithmic
- scalar Higgs boson: logarithmic and quadratic?

quadratic -> “non-naturalness”
K. Wilson 1971
L. Susskind 1979
‘t Hooft 1980
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Higgs boson decay width
Width of Higgs boson decay into b-quarks (up to N4LO)
P. Baikov, K. Chetyrkin, J. Kuhn (2006)
A. Kataev, V. K. (2008)
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Using a � �(MH)/�=0.0027 ( �(MH)�1 � 129),
mt = 175 GeV, MH = 120 GeV, mb = 2.8 GeV,
GF = 1.1667� 10�5 GeV�2 we get
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Comparing the numbers presented in Eq. (8) and
Eq. (13–14), we conclude that �4

s-terms can be
neglected at the current level of the experimen-
tal precision of “Higgs-hunting” at Fermilab and
LHC. Indeed, one can see, that even for the light
Higgs boson the numerical values of the order �4

s-
contributions to Eq.(8) are comparable with the
leading MH- and mt- dependent terms in Eqs.
(12–13).

An another approach for �Hbb, where the RG-
controllable terms are summed up, may be writ-
ten down as
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where

AD(as)2 = 1 + 2.351 as (15)
+ 4.383 a2

s + 3.873 a3
s � 15.15 a4

s.

Here, an important relation between pole and
running masses of Refs. [35,36,10] has been used.
Detailed comparison of �Hbb in RG-improved
(Eq. (14)) and in pole mass truncated (Eq. (2))
approaches was presented in Refs. [9,10].

The behavior of the RG-resummed expressions
for �Hbb and RHbb are more stable than in the
case, when RG-summation of the mass-dependent
terms is not used [4–9], [10] (Figures 1,2). Di�er-
ence of ��Hbb calculated the truncated pole-mass
approach and the RG-improved parametrization
of �Hbb is becoming smaller in each successive
order of perturbation theory.

Indeed, for the phenomenologically interesting
value of Higgs boson mass MH = 120 GeV we find
that at the �2

s-level ��Hbb � 0.7 MeV, while for
the �3

s-level it becomes smaller, namely ��Hbb �
0.3 MeV. At the �3

s-level of the RG-improved
MS-scheme series one has �Hbb � 1.85 MeV for

Figure 1. Higgs boson width in the pole (on-shell)
mass approach.
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Figure 2. Higgs boson width in the approach with
explicit RG-resummation.

MH = 120 GeV. For this scale the value of �Hbb
with the explicit dependence from the pole-mass
is 16 % higher, than its RG-improved estimate.

There are di�erent approaches to the treatment
of the typical Minkowskian �2-contributions in
the perturbative expressions for physical quanti-
ties, which demonstrated remarkable convergence
properties [13–16]. At the moment, these ap-
proaches are developing for di�erent phenomeno-
logical applications, which will alow a comparison
with the existing methods.

3. Higgs boson decay into �+��

Width of Higgs boson decay into �+, �� -
leptons in the MS-scheme can be read as [37]
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where ��
0 = (

�
2/8�)GFMHm2

� , a(MH) �
�MS(MH)/�, m� (MH) are QED running parame-
ters and as(MH) � �MS

s (MH)/� is QCD parame-
ter, and �QEDxQCD is a mixed QED-QCD correc-
tion to the coe�cient function. Evolution of run-
ning � -lepton mass in QED is similar to Eq. (6),
but with �QED, �QED

m , ���
2 and �QEDxQCD, com-

plicated by quark fractional electric charge depen-
dence [37]. �QED

3 is known since [38], and �QED
3

[23] is consistent with QED-limit of Ref. [21]. At
present for �H�� to get accuracy of �Hbb at �s3-
level it is enough to keep 2-loop running � -lepton
mass and 1-loop coe�cient function ���

1 [37].

4. Summary

Di�erent approaches based on the running and
pole b-quark masses for the decay width of the
H � bb process become consistent in higher or-
ders of perturbative QCD. However, di�erent con-
vergence in di�erent approaches demonstrates an
existence of additional theoretical QCD uncer-
tainties, which are not usually considered in phe-
nomenological studies.

Currently, for width of Higgs boson decay into
heavy leptons �H�� to have accuracy of �Hbb at
�3

s-level it is enough to take into account 2-loop
running � -lepton mass and 1-loop coe�cient func-
tion ���
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Higgs boson of the Standard Model
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Higgs boson is only scalar elementary particle
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Naturalness problem of the Standard Model at 1-loop

M. Veltman, Acta Phys.  Pol. B12 (1981) 437

On Naturalness of Scalar Fields and the Standard Model

Grigorii B. Pivovarov⇤

Institute for Nuclear Research,
Moscow, 117312 Russia

Victor T. Kim†

St. Petersburg Nuclear Physics Institute,
Gatchina, 188300 Russia
(Dated: April 26, 2008)

We discuss how naturalness predicts the scale of new physics. Two conditions on the scale are

considered. The first is the more conservative condition due to Veltman (Acta Phys. Polon. B 12,
437 (1981)). It requires that radiative corrections to the electroweak mass scale would be reasonably

small. The second is the condition due to Barbieri and Giudice (Nucl. Phys. B 306, 63 (1988)),

which is more popular lately. It requires that physical mass scale would not be oversensitive to the

values of the input parameters. We show here that the above two conditions behave di↵erently if

higher order corrections are taken into account. Veltman’s condition is robust (insensitive to higher

order corrections), while Barbieri-Giudice condition changes qualitatively. We conclude that higher

order perturbative corrections take care of the fine tuning problem, and, in this respect, scalar field

is a natural system. We apply the Barbieri-Giudice condition with higher order corrections taken

into account to the Standard Model, and obtain new restrictions on the Higgs boson mass.

PACS numbers: 11.10.Hi

It was pointed out in [1–3] that theories with scalar fields are facing a serious problem (and the Standard Model is
among these). It consists in absence of a natural explanation for small values of masses of scalar particles. (”Small”
here means much smaller than the possible fundamental scales like Plank mass or a unification scale.)

The problem appears as follows. Let us try to expand the physical mass in a series of bare couplings. In the
one-loop approximation we have

m2 = m2
0 + ⇤2P (�0, g). (1)

Here m2 is the squared mass of a scalar particle, m2
0 is the corresponding bare mass of the fundamental Lagrangian

of the model defined at the fundamental scale ⇤, which is also used as a cuto↵ in the Feynman integrals, P (�0, g)
is a polynomial of dimensionless bare scalar field selfcoupling �0 and the rest of dimensionless bare couplings g of
the model, and we neglected the corrections depending logarithmically on the cuto↵. (For example, in the Standard
Model, P (�0, g) = 3(3g22 + g21 + 2�0 � 4y2

t
)/(32⇡2), where g1, g2, and yt are the gauge couplings of the gauge groups

SU(1), SU(2), and top quark Yukawa coupling, respectively [5].) Here comes the question: How to keep m much less
than ⇤? One obvious option is to fine tune the values of m2

0 and P (�0, g) to make the two terms in the right-hand-side
of Eq. (1) cancel against each other. But this seems not to be a natural way (thus the name of the problem—the
naturalness problem). Another way is to ask for a model where P (�0, g) is exactly zero (which is the case for softly
broken supersymmetry models [4]). More generally, if one rejects unnatural fine tunings of fundamental parameters,
introducing scalar fields one should also point out a mechanism that keeps the hierarchy between m and ⇤ (the
hierarchy problem).
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v = 246GeV

�m2
H

⇡ m2
H

(⇤ = 550GeV, mH = 125GeV)

On a more practical note, Eq. (1) had been used [5, 6] to obtain the scale of new physics. The idea is not to consider
⇤ as a fundamental scale, but as a scale up to which we can use the low energy e↵ective theory implying Eq. (1).
One may restrict ⇤ requiring, for example [5], that the radiative correction to the mass squared would not exceed the
bare mass squared:

|m2 �m2
0| < m2

0. (3)

In what follows we call this condition Veltman’s condition.
Another possibility is to restrict not the magnitude of the radiative correction, but the sensitivity of the physical

mass to small changes in the values of the bare couplings [6]:

���
�0

m2

@m2

@�0

��� < q, (4)

where q parameterizes the strictness of our requirements (the value q = 10 was suggested in [6]). Hereafter, we call
this condition the Barbieri-Giudice condition.

Now, assuming that the radiative correction to mass squared is positive (P (�0, g) > 0) and neglecting the di↵erence
between bare and physical couplings, Veltman’s condition (3) implies the following restriction on ⇤:

⇤2 <
m2

2P (�, g)
, (5)

where � denotes the physical coupling corresponding to the bare coupling �0. The quantities in the right-hand-side
of this inequality are measurable. So we can substitute the measured values, and obtain an estimate for the scale of
new physics. This program was realized in Ref. [5] for the Standard Model. The outcome is that the scale for the
new physics is estimated by 1.2 TeV. Similarly, if we assume Eq. (1), Barbieri-Giudice condition (4) implies

⇤2 < q
m2

�P 0(�, g)
, (6)

where the prime over P denotes derivative with respect to �.
As we see, the two conditions yield similar upper bounds for the scale of new physics. In fact, Veltman’s condition

and Barbieri-Giudice condition are rather di↵erent, and the similarity of the bounds (5) and (6) is due to the use of
the leading order formula (1).

Let us consider what may be the influence of higher order perturbative corrections on the bounds (5) and (6).
This problem was briefly considered in Ref. [8]. It was observed that higher order corrections modify the polynomial
P (�0, g) from (1) (even making it dependent on ⇤ logarithmically). If this would be the only way higher order
corrections are getting involved, they could not influence significantly the bounds (5) and (6) (at least, at small
couplings).

Unfortunately, there are important higher order corrections overlooked in Ref. [8]: In higher orders of the expansion
of the physical mass squared in powers of the bare couplings, Eq. (1), higher powers of ⇤ will appear, and the larger
the order of perturbation theory, the larger is the power of ⇤ appearing in the right-hand-side of Eq. (1). For example,
in the third order in �0 there is a diagram with two tadpoles attached to the scalar propagator. It gives contribution
proportional to �3

0⇤
4/m2

0. Similarly, in the expansion of the physical couplings in powers of bare couplings, infinitely
high powers of ⇤ appear, and the power of ⇤ appearing in the expansion is bounded only if we consider a finite order
of the perturbation theory in �0.

A direct approach is to study the powers of ⇤ appearing in the expansion of physical parameters in powers of
bare couplings. This may be an interesting problem, but there is a shortcut allowing one to avoid it. Indeed, for
renormalizable theories, dependence of bare couplings on the cuto↵ is known if they are expressed in terms of the
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new physics. This program was realized in Ref. [5] for the Standard Model. The outcome is that the scale for the
new physics is estimated by 1.2 TeV. Similarly, if we assume Eq. (1), Barbieri-Giudice condition (4) implies

⇤2 < q
m2

�P 0(�, g)
, (6)

where the prime over P denotes derivative with respect to �.
As we see, the two conditions yield similar upper bounds for the scale of new physics. In fact, Veltman’s condition

and Barbieri-Giudice condition are rather di↵erent, and the similarity of the bounds (5) and (6) is due to the use of
the leading order formula (1).

Let us consider what may be the influence of higher order perturbative corrections on the bounds (5) and (6).
This problem was briefly considered in Ref. [8]. It was observed that higher order corrections modify the polynomial
P (�0, g) from (1) (even making it dependent on ⇤ logarithmically). If this would be the only way higher order
corrections are getting involved, they could not influence significantly the bounds (5) and (6) (at least, at small
couplings).

Unfortunately, there are important higher order corrections overlooked in Ref. [8]: In higher orders of the expansion
of the physical mass squared in powers of the bare couplings, Eq. (1), higher powers of ⇤ will appear, and the larger
the order of perturbation theory, the larger is the power of ⇤ appearing in the right-hand-side of Eq. (1). For example,
in the third order in �0 there is a diagram with two tadpoles attached to the scalar propagator. It gives contribution
proportional to �3

0⇤
4/m2

0. Similarly, in the expansion of the physical couplings in powers of bare couplings, infinitely
high powers of ⇤ appear, and the power of ⇤ appearing in the expansion is bounded only if we consider a finite order
of the perturbation theory in �0.

A direct approach is to study the powers of ⇤ appearing in the expansion of physical parameters in powers of
bare couplings. This may be an interesting problem, but there is a shortcut allowing one to avoid it. Indeed, for
renormalizable theories, dependence of bare couplings on the cuto↵ is known if they are expressed in terms of the
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where the prime over P denotes derivative with respect to �.
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and Barbieri-Giudice condition are rather di↵erent, and the similarity of the bounds (5) and (6) is due to the use of
the leading order formula (1).

Let us consider what may be the influence of higher order perturbative corrections on the bounds (5) and (6).
This problem was briefly considered in Ref. [8]. It was observed that higher order corrections modify the polynomial
P (�0, g) from (1) (even making it dependent on ⇤ logarithmically). If this would be the only way higher order
corrections are getting involved, they could not influence significantly the bounds (5) and (6) (at least, at small
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Unfortunately, there are important higher order corrections overlooked in Ref. [8]: In higher orders of the expansion
of the physical mass squared in powers of the bare couplings, Eq. (1), higher powers of ⇤ will appear, and the larger
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Standard Model: Higgs boson mass evolution

M. Veltman, Acta Phys.  Pol. B12 (1981) 437
quadratic mass divergences within MSbar renormalization: 
Dim = 4 – 2/L

mR
2 = mB

2 + P Λ2
,

where P = P (mH, mt, mW, mZ)

Veltman condition for absence of quadratic mass divergences:
P = 0

Veltman condition holds up to 2-loops:
but in higher orders it cannot be hold in self-consistent way
M.S. Al-sarhi, I. Jack, D.R.T. Jones, Zeit fur Physik Pol. C55 (1992) 283

Veltman condition and Higgs effective potential
M.B. Einhorn, D.R.T. Jones, Phys. Rev. D42 (1992) 5206
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Naturalness criteria in the Standard Model

Veltman’s criterion:

Barbieri-Guidice criterion:

On Naturalness of Scalar Fields and the Standard Model
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Moscow, 117312 Russia
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Gatchina, 188300 Russia
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We discuss how naturalness predicts the scale of new physics. Two conditions on the scale are

considered. The first is the more conservative condition due to Veltman (Acta Phys. Polon. B 12,
437 (1981)). It requires that radiative corrections to the electroweak mass scale would be reasonably

small. The second is the condition due to Barbieri and Giudice (Nucl. Phys. B 306, 63 (1988)),

which is more popular lately. It requires that physical mass scale would not be oversensitive to the

values of the input parameters. We show here that the above two conditions behave di↵erently if

higher order corrections are taken into account. Veltman’s condition is robust (insensitive to higher

order corrections), while Barbieri-Giudice condition changes qualitatively. We conclude that higher

order perturbative corrections take care of the fine tuning problem, and, in this respect, scalar field

is a natural system. We apply the Barbieri-Giudice condition with higher order corrections taken

into account to the Standard Model, and obtain new restrictions on the Higgs boson mass.

PACS numbers: 11.10.Hi

It was pointed out in [1–3] that theories with scalar fields are facing a serious problem (and the Standard Model is
among these). It consists in absence of a natural explanation for small values of masses of scalar particles. (”Small”
here means much smaller than the possible fundamental scales like Plank mass or a unification scale.)

The problem appears as follows. Let us try to expand the physical mass in a series of bare couplings. In the
one-loop approximation we have

m2 = m2
0 + ⇤2P (�0, g) (1)

Here m2 is the squared mass of a scalar particle, m2
0 is the corresponding bare mass of the fundamental Lagrangian

of the model defined at the fundamental scale ⇤, which is also used as a cuto↵ in the Feynman integrals, P (�0, g)
is a polynomial of dimensionless bare scalar field selfcoupling �0 and the rest of dimensionless bare couplings g of
the model, and we neglected the corrections depending logarithmically on the cuto↵. (For example, in the Standard
Model,

P (�0, g) = 3(3g22 + g21 + 2�0 � 4y2
t
)/(32⇡2)

where g1, g2, and yt are the gauge couplings of the gauge groups SU(1), SU(2), and top quark Yukawa coupling,
respectively [5].) Here comes the question: How to keep m much less than ⇤? One obvious option is to fine tune the
values of m2

0 and P (�0, g) to make the two terms in the right-hand-side of Eq. (1) cancel against each other. But this
seems not to be a natural way (thus the name of the problem—the naturalness problem). Another way is to ask for a
model where P (�0, g) is exactly zero (which is the case for softly broken supersymmetry models [4]). More generally,
if one rejects unnatural fine tunings of fundamental parameters, introducing scalar fields one should also point out a
mechanism that keeps the hierarchy between m and ⇤ (the hierarchy problem).

m2
H

= m2
H0 + �m2
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�m2
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16⇡2

�
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t
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On a more practical note, Eq. (1) had been used [5, 6] to obtain the scale of new physics. The idea is not to consider
⇤ as a fundamental scale, but as a scale up to which we can use the low energy e↵ective theory implying Eq. (1).
One may restrict ⇤ requiring, for example [5], that the radiative correction to the mass squared would not exceed the
bare mass squared:

|m2 �m2
0| < m2

0 (3)

In what follows we call this condition Veltman’s condition.
Another possibility is to restrict not the magnitude of the radiative correction, but the sensitivity of the physical

mass to small changes in the values of the bare couplings [6]:

���
�0

m2

@m2

@�0

��� < q (4)

where q parameterizes the strictness of our requirements (the value q = 10 was suggested in [6]). Hereafter, we call
this condition the Barbieri-Giudice condition.

Now, assuming that the radiative correction to mass squared is positive (P (�0, g) > 0) and neglecting the di↵erence
between bare and physical couplings, Veltman’s condition (3) implies the following restriction on ⇤:

⇤2 <
m2

2P (�, g)
(5)

where � denotes the physical coupling corresponding to the bare coupling �0. The quantities in the right-hand-side
of this inequality are measurable. So we can substitute the measured values, and obtain an estimate for the scale of
new physics. This program was realized in Ref. [5] for the Standard Model. The outcome is that the scale for the
new physics is estimated by 1.2 TeV. Similarly, if we assume Eq. (1), Barbieri-Giudice condition (4) implies

⇤2 < q
m2

�P 0(�, g)
(6)

where the prime over P denotes derivative with respect to �.
As we see, the two conditions yield similar upper bounds for the scale of new physics. In fact, Veltman’s condition

and Barbieri-Giudice condition are rather di↵erent, and the similarity of the bounds (5) and (6) is due to the use of
the leading order formula (1).

Let us consider what may be the influence of higher order perturbative corrections on the bounds (5) and (6).
This problem was briefly considered in Ref. [8]. It was observed that higher order corrections modify the polynomial
P (�0, g) from (1) (even making it dependent on ⇤ logarithmically). If this would be the only way higher order
corrections are getting involved, they could not influence significantly the bounds (5) and (6) (at least, at small
couplings).

Unfortunately, there are important higher order corrections overlooked in Ref. [8]: In higher orders of the expansion
of the physical mass squared in powers of the bare couplings, Eq. (1), higher powers of ⇤ will appear, and the larger
the order of perturbation theory, the larger is the power of ⇤ appearing in the right-hand-side of Eq. (1). For example,

q ≃ 10 
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of this inequality are measurable. So we can substitute the measured values, and obtain an estimate for the scale of
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where the prime over P denotes derivative with respect to �.

P 0(�, g) =
@P (�, g)

@�

As we see, the two conditions yield similar upper bounds for the scale of new physics. In fact, Veltman’s condition
and Barbieri-Giudice condition are rather di↵erent, and the similarity of the bounds (5) and (7) is due to the use of
the leading order formula (1).



Dimuon Physics at LHC, Dubna, 23-24 June 2022 Victor Kim  NRC KI - PNPI, Gatchina & SPbPU

!

Naturalness problem of the Standard Model at 1-loop
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Let us consider what may be the influence of higher order perturbative corrections on the bounds (5) and (7).
This problem was briefly considered in Ref. [8]. It was observed that higher order corrections modify the polynomial
P (�0, g) from (1) (even making it dependent on ⇤ logarithmically). If this would be the only way higher order
corrections are getting involved, they could not influence significantly the bounds (5) and (7) (at least, at small
couplings).

Unfortunately, there are important higher order corrections overlooked in Ref. [8]: In higher orders of the expansion
of the physical mass squared in powers of the bare couplings, Eq. (1), higher powers of ⇤ will appear, and the larger
the order of perturbation theory, the larger is the power of ⇤ appearing in the right-hand-side of Eq. (1). For example,
in the third order in �0 there is a diagram with two tadpoles attached to the scalar propagator. It gives contribution
proportional to �3

0⇤
4/m2

0. Similarly, in the expansion of the physical couplings in powers of bare couplings, infinitely
high powers of ⇤ appear, and the power of ⇤ appearing in the expansion is bounded only if we consider a finite order
of the perturbation theory in �0.

A direct approach is to study the powers of ⇤ appearing in the expansion of physical parameters in powers of
bare couplings. This may be an interesting problem, but there is a shortcut allowing one to avoid it. Indeed, for
renormalizable theories, dependence of bare couplings on the cuto↵ is known if they are expressed in terms of the
physical couplings [7]. Let us reiterate: for renormalizable theory, bare mass squared of a scalar particle expressed
as a series in powers of physical couplings with coe�cients of the expansion depending on the cuto↵, physical masses
and renormalization scale grows not faster than the cuto↵ squared. Is this statement compatible with the appearance
of higher powers of the cuto↵ in the right-hand-side of Eq. (1)? It is easy to check that there is no contradiction.
Indeed, schematically, if we take the renormalization scale to be of the order of physical mass, the bare mass squared
and the bare coupling are expressed as follows

m2
0 = m2 � ⇤2 P (�, g) (8)

�0 = �+ log(
⇤2

m2
)
�(�, g)

2
(9)

where P (�, g) is (in the leading order) the same polynomial as in Eq.(1), and �(�, g) is the leading order of the beta
function governing the renormalization group evolution of coupling �. If we use the above expressions as equations
for m2 and �, we can determine the expansions of m2 and � in powers of �0. It is easy to check that both power series
involve arbitrary high powers of the cuto↵. The reason for the appearance of the high powers of ⇤ in the expansions
is the presence of m2 in the argument of the logarithm. (Logarithmic term is also present in the formula for bare
mass, but we dropped it, because it is insignificant for further reasoning.)

If we put �(�, g) = 0 in Eq. (9), we derive the bounds (5) and (7) from Veltman’s condition (3) and Barbieri-Giudice
condition (4), respectively. Evidently, the bound (5) is not influenced by nonzero �(�, g) in any way. In what follows,
we see how the fact that �(�, g) 6= 0 influences the bound (7).

We need to compute the derivative @m2/@�0 involved in Barbieri-Giudice condition (4). More generally, we need
to compute the entries of the matrix
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The inverse of the desired A can be computed with Eqs. (8) and (9):
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where primes over � and P denote the derivative with respect to �. Thus, the desired A is

A =
1
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where

det(B) = � ⇤2

m2
P 0(�, g)

�(�, g)

2
+ log(

⇤2

m2
)
�0(�, g)

2
+ 1 (14)
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Let us consider what may be the influence of higher order perturbative corrections on the bounds (5) and (7).
This problem was briefly considered in Ref. [8]. It was observed that higher order corrections modify the polynomial
P (�0, g) from (1) (even making it dependent on ⇤ logarithmically). If this would be the only way higher order
corrections are getting involved, they could not influence significantly the bounds (5) and (7) (at least, at small
couplings).

Unfortunately, there are important higher order corrections overlooked in Ref. [8]: In higher orders of the expansion
of the physical mass squared in powers of the bare couplings, Eq. (1), higher powers of ⇤ will appear, and the larger
the order of perturbation theory, the larger is the power of ⇤ appearing in the right-hand-side of Eq. (1). For example,
in the third order in �0 there is a diagram with two tadpoles attached to the scalar propagator. It gives contribution
proportional to �3

0⇤
4/m2

0. Similarly, in the expansion of the physical couplings in powers of bare couplings, infinitely
high powers of ⇤ appear, and the power of ⇤ appearing in the expansion is bounded only if we consider a finite order
of the perturbation theory in �0.

A direct approach is to study the powers of ⇤ appearing in the expansion of physical parameters in powers of
bare couplings. This may be an interesting problem, but there is a shortcut allowing one to avoid it. Indeed, for
renormalizable theories, dependence of bare couplings on the cuto↵ is known if they are expressed in terms of the
physical couplings [7]. Let us reiterate: for renormalizable theory, bare mass squared of a scalar particle expressed
as a series in powers of physical couplings with coe�cients of the expansion depending on the cuto↵, physical masses
and renormalization scale grows not faster than the cuto↵ squared. Is this statement compatible with the appearance
of higher powers of the cuto↵ in the right-hand-side of Eq. (1)? It is easy to check that there is no contradiction.
Indeed, schematically, if we take the renormalization scale to be of the order of physical mass, the bare mass squared
and the bare coupling are expressed as follows
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Now we see why it is important to keep nonzero �(�, g) in the consideration: Neglecting �(�, g) removes the most
important first two terms in the right-hand-side of this expression. As a consequence, neglecting �(�, g) leads to a
qualitative mistake in the estimate of the behavior of the matrix of derivatives A in the limit of large ⇤.

Before continuing, we have to make a reservation. In Eq. (13), we have expressions for derivatives of physical
parameters with respect to bare parameters in terms of physical parameters and cuto↵. We are going to consider
them in the limit of infinite cuto↵. It is not obvious that this limit is meaningful. The model may have no continuum
limit, and may be sensible only at a finite cuto↵. In that case, Eq. (13) may be used to study the sensitivity of
physical parameters with respect to variations in the bare parameters at finite cuto↵. In what follows, we assume
that the limit of infinite cuto↵ is meaningful, and leave the cases with finite cuto↵ for future studies.

Finally, in the limit of infinite ⇤, we have:

A =

 
0 0

� 2m2

�(�,g) 0

!
(15)

Let us comment on Eq. (15). As we see, physical parameters—the observable mass and coupling—are not oversen-
sitive to the values of the bare parameters defined at a large (e.g., fundamental) scale ⇤. The leading order relation,
Eq. (1), is misleading in this respect. In other words: Derivative of observable mass in bare coupling has a finite
limit expressible in terms of observable parameters when the cuto↵ is removed. ( This is the worst sensitivity we
have: the physical coupling exhibits universality, i.e., it becomes independent of bare parameters at infinite cuto↵;
the physical mass becomes independent of the bare mass at infinite cuto↵.) We conclude that the fine tuning problem
is the problem of the leading order perturbative approximation, Eq. (1).

Now we can derive from the Barbieri-Giudice condition(4) the inequality

�� 2�

�(�, g)

�� < q (16)

where we neglected the di↵erence between � and �0.
Let us specialize inequality (16) to the case of the Standard Model. The Standard Model one-loop beta-function

governing the evolution of the scalar selfcoupling � is [9]
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t
]

+
1

16
g41 +

1

8
g21g

2
2 +
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16
g42 � y4

t
) (17)

where g1 and g2 are gauge couplings of SU(1) and SU(2) respectively, yt = mt/v (mt is the mass of the top quark,
and v is the vacuum expectation of the scalar field). The couplings involved in the expression for the beta function can
be expressed via ratios of the masses and the scalar field vacuum expectation value v. In this way, for the Standard
Model, Barbieri-Giudice condition (4) implies the following inequality:

4m2
H
v2

|p(mH ,mZ ,mW ,mt)|
<

3q

4⇡2
(18)

where p(mH ,mZ ,mW ,mt) is the following polynomial of the Higgs, Z, W and top quark masses:

p(mH ,mZ ,mW ,mt) = m4
H
+m2

H
(2m2

t
�m2

Z
� 2m2

W
)

� 4m4
t
+m4

Z
+ 2m4

W
(19)

Thus, Barbieri-Giudice condition (4) implies a restriction on the Higgs boson mass. Using known values, we see that
inequality (18) forbids moderate values of the Higgs boson mass. For example, if we take q = 10, we obtain that the
band of values of mH approximately from 96 GeV to 540 GeV is forbidden. (The value for the upper boundary of
the forbidden band is hardly reliable, because it corresponds to strongly interacting Higgs bosons.) If we relax the
Barbieri-Giudice condition and take q = 15 (20), the forbidden band shrinks: it ranges from 113 (126) GeV to 438
(380) GeV.

Let us summarize our findings. Taking into account higher order perturbative corrections does not change the
basic fact: radiative corrections to the electroweak scale are growing fast with cuto↵. At 1.2 TeV the correction
to the intermediate bosons mass squared is about a half of the total mass squared. Is it new physics that half of
the observable mass scale is due to radiative corrections is a matter of convention. We consider such a situation as
deserving the title of new physics. To say the least, perturbation theory looks jeopardized in such circumstances.
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Thus, Barbieri-Giudice condition (4) implies a restriction on the Higgs boson mass. Using known values, we see that
inequality (18) forbids moderate values of the Higgs boson mass. For example, if we take q = 10, we obtain that the
band of values of mH approximately from 96 GeV to 540 GeV is forbidden. (The value for the upper boundary of
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Thus, Barbieri-Giudice condition (4) implies a restriction on the Higgs boson mass. Using known values, we see that
inequality (18) forbids moderate values of the Higgs boson mass. For example, if we take q = 10, we obtain that the
band of values of mH approximately from 96 GeV to 540 GeV is forbidden. (The value for the upper boundary of
the forbidden band is hardly reliable, because it corresponds to strongly interacting Higgs bosons.) If we relax the
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(380) GeV.

Let us summarize our findings. Taking into account higher order perturbative corrections does not change the
basic fact: radiative corrections to the electroweak scale are growing fast with cuto↵. At 1.2 TeV the correction
to the intermediate bosons mass squared is about a half of the total mass squared. Is it new physics that half of
the observable mass scale is due to radiative corrections is a matter of convention. We consider such a situation as
deserving the title of new physics. To say the least, perturbation theory looks jeopardized in such circumstances.
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Now we see why it is important to keep nonzero �(�, g) in the consideration: Neglecting �(�, g) removes the most
important first two terms in the right-hand-side of this expression. As a consequence, neglecting �(�, g) leads to a
qualitative mistake in the estimate of the behavior of the matrix of derivatives A in the limit of large ⇤.

Before continuing, we have to make a reservation. In Eq. (13), we have expressions for derivatives of physical
parameters with respect to bare parameters in terms of physical parameters and cuto↵. We are going to consider
them in the limit of infinite cuto↵. It is not obvious that this limit is meaningful. The model may have no continuum
limit, and may be sensible only at a finite cuto↵. In that case, Eq. (13) may be used to study the sensitivity of
physical parameters with respect to variations in the bare parameters at finite cuto↵. In what follows, we assume
that the limit of infinite cuto↵ is meaningful, and leave the cases with finite cuto↵ for future studies.

Finally, in the limit of infinite ⇤, we have:

A =

 
0 0

� 2m2

�(�,g) 0

!
(15)

Let us comment on Eq. (15). As we see, physical parameters—the observable mass and coupling—are not oversen-
sitive to the values of the bare parameters defined at a large (e.g., fundamental) scale ⇤. The leading order relation,
Eq. (1), is misleading in this respect. In other words: Derivative of observable mass in bare coupling has a finite
limit expressible in terms of observable parameters when the cuto↵ is removed. ( This is the worst sensitivity we
have: the physical coupling exhibits universality, i.e., it becomes independent of bare parameters at infinite cuto↵;
the physical mass becomes independent of the bare mass at infinite cuto↵.) We conclude that the fine tuning problem
is the problem of the leading order perturbative approximation, Eq. (1).
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where g1 and g2 are gauge couplings of SU(1) and SU(2) respectively, yt = mt/v (mt is the mass of the top quark,
and v is the vacuum expectation of the scalar field). The couplings involved in the expression for the beta function can
be expressed via ratios of the masses and the scalar field vacuum expectation value v. In this way, for the Standard
Model, Barbieri-Giudice condition (4) implies the following inequality:
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where g1 and g2 are gauge couplings of SU(1) and SU(2) respectively, yt = mt/v (mt is the mass of the top quark,
and v is the vacuum expectation of the scalar field). The couplings involved in the expression for the beta function can
be expressed via ratios of the masses and the scalar field vacuum expectation value v. In this way, for the Standard
Model, Barbieri-Giudice condition (4) implies the following inequality:
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Thus, Barbieri-Giudice condition (4) implies a restriction on the Higgs boson mass. Using known values, we see that
inequality (18) forbids moderate values of the Higgs boson mass. For example, if we take q = 10, we obtain that the
band of values of mH approximately from 96 GeV to 540 GeV is forbidden. (The value for the upper boundary of
the forbidden band is hardly reliable, because it corresponds to strongly interacting Higgs bosons.) If we relax the
Barbieri-Giudice condition and take q = 15 (20), the forbidden band shrinks: it ranges from 113 (126) GeV to 438
(380) GeV.

Let us summarize our findings. Taking into account higher order perturbative corrections does not change the
basic fact: radiative corrections to the electroweak scale are growing fast with cuto↵. At 1.2 TeV the correction
to the intermediate bosons mass squared is about a half of the total mass squared. Is it new physics that half of
the observable mass scale is due to radiative corrections is a matter of convention. We consider such a situation as
deserving the title of new physics. To say the least, perturbation theory looks jeopardized in such circumstances.
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limit expressible in terms of observable parameters when the cuto↵ is removed. ( This is the worst sensitivity we
have: the physical coupling exhibits universality, i.e., it becomes independent of bare parameters at infinite cuto↵;
the physical mass becomes independent of the bare mass at infinite cuto↵.) We conclude that the fine tuning problem
is the problem of the leading order perturbative approximation, Eq. (1).
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where g1 and g2 are gauge couplings of SU(1) and SU(2) respectively, yt = mt/v (mt is the mass of the top quark,
and v is the vacuum expectation of the scalar field). The couplings involved in the expression for the beta function can
be expressed via ratios of the masses and the scalar field vacuum expectation value v. In this way, for the Standard
Model, Barbieri-Giudice condition (4) implies the following inequality:
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Thus, Barbieri-Giudice condition (4) implies a restriction on the Higgs boson mass. Using known values, we see that
inequality (18) forbids moderate values of the Higgs boson mass. For example, if we take q = 10, we obtain that the
band of values of mH approximately from 96 GeV to 540 GeV is forbidden. (The value for the upper boundary of
the forbidden band is hardly reliable, because it corresponds to strongly interacting Higgs bosons.) If we relax the
Barbieri-Giudice condition and take q = 15 (20), the forbidden band shrinks: it ranges from 113 (126) GeV to 438
(380) GeV.

Let us summarize our findings. Taking into account higher order perturbative corrections does not change the
basic fact: radiative corrections to the electroweak scale are growing fast with cuto↵. At 1.2 TeV the correction
to the intermediate bosons mass squared is about a half of the total mass squared. Is it new physics that half of
the observable mass scale is due to radiative corrections is a matter of convention. We consider such a situation as
deserving the title of new physics. To say the least, perturbation theory looks jeopardized in such circumstances.

G. Pivovarov, V.K. Phys. Rev. D78 (2008) 016001
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(Non-)Naturalness of the standard model

Logarithmic evolution of theory parameters:
weak dependence between low and very large scales

-> concept of ”Naturalness”

- Scalar field is simple, but “non-natural”:
scalar mass evolution is quadratic, not logarithmic
K. Wilson, Phys. Rev. D3 (1971) 1818
L. Susskind, Phys. Rev. D20 (1979) 2619

- Scalar field is not protected by a symmetry,
while fermions are protected by chiral symmetry
G. ‘t Hooft,  Proc. Cargese Summer Inst. (1980) 

for reviews see, e.g., G. Giudice  (2008,2013),   N. Craig (2022)
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(Non-)Naturalness in physics

concept of ”Naturalness”

- Hierarchy problem:
dimensionless parameter significantly differs from unity
big numbers P. Dirac 
cosmological constant

- Fine-tuning
high sensitivity of parameter to different scales

- Restoration of a symmetry  
G. ‘t Hooft,  Proc. Cargese Summer Inst. (1980) 

for reviews see, e.g., G. Giudice  (2008,2013),   N. Craig (2022)
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Standard Model with 125 GeV Higgs boson  

Higgs boson: if no quadratic divergences 

Higgs boson defines electroweak vacuum density
(meta)stable vacuum up to Planck scales

F. Bezrukov, M. Kalmykov, B. Kniehl & M. Shaposhnikov, JHEP 10 (2012) 140

SM+heavy sterile leptons: M. Shaposhnikov (2007)
No New Physics (“particle desert”) up to Planck scales
Still needs to explain:
- (~ 1 GeV) BSM neutral leptons to explain Dark Matter
- strong CP-problem
- neutrino masses
- baryon-antibaryon asymmetry
…

Quardratic divergence: S. Mooij, M. Shaposhnikov (2021)
an artefact of the standard QFT formulation
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Standard Model with 125 GeV Higgs boson  
Higgs boson mass defines electroweak vacuum density
Meta-stable vacuum
G. Degrassi et al., JHEP 08 (2012) 098
D. Butazzo et al., JHEP 12 (2013) 089
A. Bednyakov et al., Phys. Rev. Lett. 115 (2015) 201802
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Figure 3. Left: SM phase diagram in terms of Higgs and top pole masses. The plane is divided into
regions of absolute stability, meta-stability, instability of the SM vacuum, and non-perturbativity of
the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative for Mt > 230 GeV.
The dotted contour-lines show the instability scale ΛI in GeV assuming α3(MZ) = 0.1184. Right:
zoom in the region of the preferred experimental range of Mh and Mt (the grey areas denote
the allowed region at 1, 2, and 3σ). The three boundary lines correspond to 1-σ variations of
α3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size of the theoretical error.

stability, metastability, and instability of the EW vacuum are shown both for a broad range

ofMh andMt, and after zooming into the region corresponding to the measured values. The

uncertainty from α3 and from theoretical errors are indicated by the dashed lines and the

colour shading along the borders. Also shown are contour lines of the instability scale ΛI .

As previously noticed in ref. [8], the measured values of Mh and Mt appear to be rather

special, in the sense that they place the SM vacuum in a near-critical condition, at the

border between stability and metastability. In the neighbourhood of the measured values

of Mh and Mt, the stability condition is well approximated by

Mh > 129.1GeV + 2.0(Mt − 173.10GeV)− 0.5GeV
α3(MZ)− 0.1184

0.0007
± 0.3GeV . (4.4)

The quoted uncertainty comes only from higher order perturbative corrections. Other

non-perturbative uncertainties associated with the relation between the measured value of

the top mass and the actual definition of the top pole mass used here (presumably of the

order of ΛQCD) are buried inside the parameter Mt in eq. (4.4). For this reason we include

a theoretical error in the top pole mass and take Mt = (173.10 ± 0.59exp ± 0.3th)GeV.

Combining in quadrature theoretical uncertainties with experimental errors, we find

Mh > (129.1± 1.5)GeV (stability condition). (4.5)
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Standard Model vacuum stability vs new LHC data  
J. Ellis, arXiv: 1702.05436 (2017)

D. Butazzo et al., JHEP 12 (2013) 089

are two important sources of this renormalization at the one-loop level. One is that due to � itself, which
tends to increase � as the renomalization scale Q increases:

�(Q) '
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Left to itself, this self-renormalization would cause � to blow up at some high renormalization scale Q.
However, there is also importantant one-loop renormalization of � due to loops of top quarks:
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which tends to decrease � as the renomalization scale Q increases, driving it towards negative values. If
� indeed turns negative, there soon appears a field value with lower energy than our electroweak vacuum,
which becomes unstable or at least metastable.

The left panel of Fig. 10 illustrates how the negative renormalization by the top quark drives � < 0

in the Standard Model [43, 44], though this is subject to uncertainties in mt, in particular. As seen in the
right panel of Fig. 10, the current world averages of mt and mH suggest that these parameters indeed
lie within the region where the Standard Model electroweak vacuum is metastable. In my view, this is a
potential disaster (pun intended) that would require new physics to avert it.

Fig. 10: Left panel: The negative renormalization of the Higgs self-coupling by the top quark within the Standard
Model leads to an instability in the Higgs potential for field values ⇠ 10

9 GeV [43]. Right panel: Experimental
measurements of mt and mH suggest that the electroweak vacuum of the Standard Model would be metastable,
modulo uncertainties in mt, in particular [44].

As seen in Fig. 10, the location and indeed existence of the instability scale ⇤I are particularly
sensitive to mt, and also to ↵s as well as to mH . One calculation including higher-order effects yields
the following dependences on these parameters [44]:
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(30)
Inserting the world average value (27) for mH , mt = 173.3±1.0 GeV and ↵s(mZ) = 0.1181±0.0011,
we estimate

log10 ⇤I) = 9.4± 1.1 , (31)

14
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Standard Model: Higgs boson mass evolution

The previously discussed calculations were done
within MSbar renormalization: 
based on popular dimensional regularization (DR)

-> no quadratic mass divergences in “standard” prescription

Also, used as an argument for a necessity of SUSY
R. Barbieri, G.F. Giudice, Nucl. Phys. B306 (1988) 63

Physical renormalization:
momentum substraction (MOM) scheme

-> there are quadratic mass divergences 
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Naturalness of Standard Model

Barbieri-Giudice (BG) condition:
sensitivity physical parameters for small variation of bare ones
R. Barbieri, G.F. Giudice, Nucl. Phys. B306 (1988) 63

Using improved BG condition with both quadratic and logarithmic 
contributions leads to extention of Naturalness domain of SM:
up ~ O(10 TeV) instead of ~ O (1 TeV)
VK, G. Pivovarov, Phys. Rev. D78 (2008) 016001

A regular way for scalar boson mass evolution 
with quadratic mass divergences
G. Pivovarov, Phys. Rev. D81 (2010) 076077

Landau pole like
in λH4:
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in the Standard Model [43, 44], though this is subject to uncertainties in mt, in particular. As seen in the
right panel of Fig. 10, the current world averages of mt and mH suggest that these parameters indeed
lie within the region where the Standard Model electroweak vacuum is metastable. In my view, this is a
potential disaster (pun intended) that would require new physics to avert it.
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As seen in Fig. 10, the location and indeed existence of the instability scale ⇤I are particularly
sensitive to mt, and also to ↵s as well as to mH . One calculation including higher-order effects yields
the following dependences on these parameters [44]:

log10

✓
⇤I

GeV

◆
= 9.4 + 0.7

⇣
mH

GeV
� 125.15

⌘
� 1.0

⇣
mt

GeV
� 173.34

⌘
+ 0.3

✓
↵s(mZ)� 0.1184

0.0007

◆
.

(30)
Inserting the world average value (27) for mH , mt = 173.3±1.0 GeV and ↵s(mZ) = 0.1181±0.0011,
we estimate

log10 ⇤I) = 9.4± 1.1 , (31)
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Standard Model: Higgs boson roles

- provide mass to SM particles by 
Brout-Englert-Higgs mechanism

- restore unitarity for EW vector boson scattering: 
Higgs boson cancels quadratic growth

of longitudinal components for EW vector bosons
with collision energy

- if Higgs could be very light -> no noticeable growth
with collision energy

- if Higgs could be very heavy -> 
strong growth of EW vector boson interaction -> 
New SM dynamics: nonpertubative strong EW interaction 
can lead to heavy EW resonances
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SM with “non-natural” Higgs boson 

Proper physical consideration with quadratic evolution 
for Higgs boson mass:

Higgs boson observables (mass, self-coupling, EW vacuum density) 
gets critical values at much earlier scales
than “standard” treatments without quadratic divergences

-> at those scales ~ O(10 TeV) one should expect 
new physics manifestations:
- new strong EW dynamics
- or/and New Physics beyond Standard Model 
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!
Summary

n Standard Model without quadratic evolution for Higgs boson mass
requires (!) New Physics to have Naturalness

n Naturalness domain of Standard Model with
quadratic evolution for Higgs boson mass may be larger
than generally accepted: ~ O(10 TeV) instead of ~ O (1 TeV)

n Present LHC physics: new physics is unavoidable
either as a new dynamics of SM or/and a New Physics.

Search for New Physics requires (non-)Naturalness studies


